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Abstract
Background: Blood leukocytes constitute two interchangeable sub-populations, the marginated
and circulating pools. These two sub-compartments are found in normal conditions and are
potentially affected by non-normal situations, either pathological or physiological. The dynamics
between the compartments is governed by rate constants of margination (M) and return to
circulation (R). Therefore, estimates of M and R may prove of great importance to a deeper
understanding of many conditions. However, there has been a lack of formalism in order to
approach such estimates. The few attempts to furnish an estimation of M and R neither rely on
clearly stated models that precisely say which rate constant is under estimation nor recognize
which factors may influence the estimation.

Results: The returning of the blood pools to a steady-state value after a perturbation (e.g.,
epinephrine injection) was modeled by a second-order differential equation. This equation has two
eigenvalues, related to a fast- and to a slow-component of the dynamics. The model makes it
possible to identify that these components are partitioned into three constants: R, M and SB; where
SB is a time-invariant exit to tissues rate constant. Three examples of the computations are worked
and a tentative estimation of R for mouse monocytes is presented.

Conclusions: This study establishes a firm theoretical basis for the estimation of the rate
constants of the dynamics between the blood sub-compartments of white cells. It shows, for the
first time, that the estimation must also take into account the exit to tissues rate constant, SB.

Background
Blood leukocytes are found in two sub-populations con-
stituting the circulating and the marginating pools. The el-
ements of these two sub-populations are interchangeable,
i.e., marginated leukocytes return to bloodstream and
vice-versa [1–3]. Therefore, a dynamical equilibrium situ-

ation occurs, and blood cell counts should reflect the rate
constants of margination and return to circulation of
those cells.

Several studies addressed the relationships between the
sub-populations of white cells within the blood pool.
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Among other features, the ratio between the sub-popula-
tions under normal conditions [4], under altered states
[4,5] and the stability of the equilibrium situation (i.e., to
resume a previous value after perturbations, [e.g., [6–8])
were approached. It is presently accepted that the blood
sub-pools play an important role as a white cell reservoir
when increased demands supervene. Increased demands
arise in both pathological and non-pathological situa-
tions, as during exercise [9,10], burns [11,12], infectious
diseases [13], inflammatory processes [5,14], etc.. It is also
currently recognized that some hormones acutely alter the
dynamics of the blood sub-pools of white cells [6–8]. In
this sense, epinephrine is known to possess a demarginat-
ing effect that lasts for less than 1 hour, and such an effect
is thought to be the result of changes in the rate constants
of margination and return [2,6]. Therefore, the interplay
between marginating and circulating leukocytes is a rele-
vant issue that should be taken into account in the inter-
pretation of many results.

On the one hand, it is tacitly assumed that the rate con-
stants of margination and return have higher values than
other rate constants related to the dynamics of white
blood cells (see below). On the other hand, there is no
study addressing such an issue in a formal way in order to
provide good estimation of these values. The aim of the
present study is to provide the theoretical background to
perform estimations of these rate constants, which may
prove relevant for empirical studies on healthy normal sit-
uations as well as under altered states of the organisms.

Constructing the extensive model
In this sub-section, we present a model based mainly on
data from monocytes and neutrophils. The model de-
scribes the dynamics of three compartments of these cells
and also contains the dynamics of specific growth factors.
In the next sub-section we show a reduced model from
this one, which will then be employed to obtain an im-
proved estimation for the rate constants values. The exten-
sive model is presented to assure consistence of the
analysis.

Bone marrow total rate production apparently has three
components: a fixed production rate (P1), a production
rate dependent on self-regulatory factors (P2) and a pro-
duction rate dependent on inflammatory/infectious fac-
tors (P(I)) [3]. Therefore, the production rate is not a time
independent function, and we denote it by the sum of the
three terms above. Once the newly produced cell gains the
bloodstream, it may marginate (rate constant M). A mar-
ginated cell may then return to circulation (rate constant
R). Cells in the blood may leave to surrounding solid tis-
sues, and they do that according to a time-independent
rate constant SB[1]. Exit to tissues is also a function of rate
constants dependent on inflammatory/infectious factors

[3]. Thus, let us denote such a total exit rate constant from
the circulation by SB + S(t,I). Tissue leukocytes may prolif-
erate locally (rate constant D), produce self-regulatory fac-
tors and, eventually, die (rate constant Z) [15]. This set of
empirical data suggests the scheme presented in Figure 1
and the following equation system for describing the dy-
namics of these cells:

Where α are self-regulatory factors (e.g., CSF-1) and φi re-
fers to cells that take part in the circulating (c), marginal
(m) and solid-tissues (T) pools. G is a constant related to
the production of self-regulatory factors, and K is the rate
constant of their clearance. Notice that the exit to tissues
comes both from the circulating pool, φc, and from the
marginated pool, φm. Such an exit has the same rate con-
stant, SB, independently of the sub-pool. This partition of
the total exit constant rate to tissues in two components is
the basic reasoning that leads to the inference about the
existence of two distinct sub-pools within the blood white
cells [1]. Therefore, a cell that touches, attaches and passes
through the vessel wall cannot return to the circulating
pool, even though during a certain time interval this cell
was marginated (semantically but not functionally). In
this sense, these cells exit to the surrounding tissues com-
ing directly from the circulating pool, and their dynamics
is contemplated by the product φcSB of the differential
equation. Those marginated cells that can potentially re-
turn to circulation have their dynamics accounted for by
the rate constant R. On the other hand, part of these mar-
ginated cells migrate to surrounding tissues and the prod-
uct φmSB contemplates this rate. This dynamics is also
consistent to the empirical evidence that margination and
diapedesis are distinct features arising from different sig-
nals and receptors [16].

Reducing to the compact model
The injection of some substances, epinephrine in particu-
lar, changes the rate constants of margination and return
to circulation (M and R) for very short periods of time
(e.g., see [2,6–8]). Under such a condition, the variable
values change as the parameter values change. However,
since the substance is rapidly metabolized, the parameters
return to their previous value and then the variables
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would also return to some value maintained previously to
the perturbation (in the parameters). Thereby, these sub-
stances act on the system described by equations 1a-d
analogously to an impulsive function [17]. The returning
phase is the relaxing period of the system, and it behaves
as the perturbation had occurred in the variables instead
of in the parameters. During the short time interval of the
relaxing period, the production rate can be considered
constant, P. Therefore, equations 1a and 1b maintain no
loop-connection to the other two equations (1c and 1d),
and a compact system can be written as:

Results
Analysis of the steady-state condition
The first step in the analysis was to verify whether the ex-
tensive model allows the existence of a stable equilibrium
point. An equilibrium point means a set of values of the
variables (in this case, φc, φm, φT and α) that does not vary
with time (if the system is left externally undisturbed).
Stability is related to the behavior of the system in face of
perturbations in the variables that displace them to some
vicinity of an equilibrium point. The equilibrium point is
said asymptotically stable if the system returns to the equi-
librium point attained previously. Otherwise, the equilib-
rium point may be neutrally stable, if the system does not
return to the equilibrium point but remains somewhere
around it, or unstable, if the system leaves that vicinity
away (e.g., [18]).

Figure 1
Schematic representation of the dynamics of white cells in the organism. The self-reproduction in tissues is represented by "D",
without arrows. Crosses denote death or clearance. See text for details.
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We verified whether the extensive model posses one as-
ymptotically stable equilibrium point as a first step be-
cause the biological system modeled seems to behave like
this. Once disturbed, it returns to a previous value. The
analysis revealed the existence of one equilibrium point,
and such a point is asymptotically stable (see Methods).
Let * denote the value of the variable in the equilibrium
point. Without loss of generality by considering the in-
flammatory/infectious factors absent and that φT and α
are fixed (e.g., for a short time interval or changes in R or
M, see Methods), the equilibrium values of the variables
that we are interested in the present study are:

As stated before, blood cell counts should reflect the rate
constants of margination and return. Let f* denote the ra-
tio φm

*/φc
* and thus:

Notice that one is not able to know, directly from the ratio
φm

* /φc
*, the values of R and M themselves.

The demarginated state and its return to the equilibrium 
condition
In a very short time interval succeeding a bolus injection
of some substances (e.g., epinephrine) the parameters R
and M change and return to their previous values. There-
fore, the circulating and marginal pools attain different
values from φc

* and φm
*, respectively. Given the stability

of the equilibrium point (see above) these variables return
to φc

* and φm
*. This returning is governed by a second-or-

der differential equation (see Methods). Let  be the
value attained above (or below) the equilibrium value φc

*

by the circulating cells after the perturbation (see Meth-
ods). In short,  (see equation 9).
Therefore, taking the equilibrium value of the circulating
pool as a reference value,  is the difference between
this value and the value found at a time t after the begin-
ning of the returning to the steady-state equilibrium con-
dition. This leads to the following equation governing the
fast-phase of resuming the steady-state condition:

where φc0 is the peak (or nadir) value of the circulating
pool attained after the perturbation, i.e., the initial value
of this variable, and λ is the fast component of the process
(λ2, see Methods equation 11b). Equation 5 can be line-
arized to simplify the estimation procedure. Finally, the λ
of equation 5 is (see equation 11b):

λ = -(R + SB)(f* + 1)

This value of λ allows a good estimate of R during the fast
phase of the returning to the equilibrium point (steady-
state of the sub-pools). In the next section, we will work
some examples of the application of the present model
and its potential relevance.

Worked examples
The present study offers the means to compute the indi-
vidual values of R and M. As stated before, the ratio f* is
obtained by measuring the marginated and the circulating
pools in steady-state conditions. This ratio is equal to M/
(R+SB) (see equation 4). Therefore, its is important to
note that the individual computation of R (and M) as-
sumes that a series of other independent measurements
were done: (a) φc

* (the steady-state value of the circulating
pool); (b) φm

* (the steady-state value of the marginated
pool); (c) SB (the exit rate constant from the total blood
pool to tissues). The knowledge of a general production
rate value may also improve the picture, even though its is
not a primary need.

The first example intends to compute the R value for mice
monocytes under normal conditions. However, the pauci-
ty of adequate data prevents a true computation. There-
fore, we will compute an approximate value. The other
two examples are completely imaginary. They show the
usefulness of the model to address changes in the rate
constants that would otherwise pass unnoticed.

I. The normal condition
The computations are based on data from van Furth and
Sluiter [1]. The report give φc

* = 350 monocytes/mm3,
φm

* = 500 monocytes/mm3 and SB = 9.6 × 10-4 min-1. The
f* value is 500/350 = 1.43. An intravenous bolus injection
of epinephrine caused a two-fold increase in φc after 10
minutes of the injection. Therefore,  (or,
φc(0) = 700). After 60 minutes from the injection time (50
minutes after the monocytes peak), the variables resume
their normal values. Notice the extremely limited tempo-
ral data. Let us suppose that we had a few more points, as
illustrated in Figure 2A. From equation 5, the data could
be linearized as:
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Where T is the discrete sampling time. Figure 2B shows the
result of the linearization procedure. A linear regression
would then result in λ = -0.113 min-1. Finally, from equa-
tion 6, we know that this value must be decomposed as

-0.113 = -(R + SB)(1 + f*)

Thus, R = 0.0456 min-1, a value 47-fold greater than SB. In
the data simulation, R = 0.045 min-1, therefore the proce-
dure seems quite adequate. This example highlights the
use of the present model as well as the difference between
the eigenvalue (λ, obtained directly from the data) and
the constant R. Also, as far as we know, this is the first at-
tempt to estimate the value of R (and M) under a complete
and formal model.

II. Tumoral effects
Consider, as another example, that mice carrying a certain
tumor type have the exit constant rate equal to the normal
value (SB = 9.6 × 10-4 min-1). The f* value is 1.3 and these
mice have φc

* = 490 monocytes/mm3, φm
* = 637 mono-

cytes/mm3. Obviously, production rate have increased.
Notice the potential confusing situation arising from
these data. Does the tumor growth alter the dynamics be-
tween the blood pools? The epinephrine experiment (or
some analogue) was conducted, and  (or,
φc(0) = 600). Figure 2C shows both the "normal" and the
"tumoral" data. Linear regression of the log-transformed
data computes λ = -0.065 min-1 (see Figure 2B) and thus
R = 0.0273 min-1 since f* = 1.3. In data simulation, R =
0.027 min-1, again the results are in close agreement with
the real parameter value. Therefore, in this constructed sit-
uation, one would be able to conclude that the rate con-
stants of the transit between the blood pool were altered
by the pathological condition. This could be an important
result in tumor immunology, for example, allowing a bet-
ter understanding of the pathology or devising new treat-
ment strategies.

III. Long Distance Running Effects
Our final imaginary example is related to the effects of
long sustained aerobic exercise. Consider that mice
trained in this type of exercise are known to have in-
creased production rate of monocytes. During the steady-
state condition of the exercise, φc

* = 350 monocytes/mm3,
φm

* = 700 monocytes/mm3, thus f* = 2. SB increased to
8.5 × 10-3 min-1. An epinephrine experiment is performed
during the exercise section and samples are taken during
the decaying phase after the injection (the exercise section
proceeds during the sampling period). The "continuos"
count profile is illustrated in Figure 2C. Linear regression
of the log-transformed data (see Figure 2B) computes λ =
-0.041 min-1 and thus R = 0.0052 min-1 (in data simula-
tion, R = 0.005 min-1). This is a 9-fold decrease in the R
value in relationship to the normal condition. On the oth-

Figure 2
Simulated perturbation in the blood sub-pools of a white cell
type (e.g., monocytes) under three different conditions: nor-
mal (blue), tumor carrying animal (red), long-term aerobic
exercising animal (green); see text for details. (A) "Raw
experimental data", the "discrete" time course of φc after a
bolus injection of epinephrine under the normal condition.
(B) Log-transformed (linearized) data, under the three differ-
ent conditions. Notice the linear relationship obtained. (C)
"Raw "continuous" data" of the φc time course. Data gener-
ated in MatLab 5.3 (The MathWorks, Natick, MA) by built-in
numerical integration routines of the set of differential equa-
tions of the model.

φc
~ 0 110( ) =
Page 5 of 8
(page number not for citation purposes)



BMC Physiology 2002, 2 http://www.biomedcentral.com/1472-6793/2/3
er hand, the rate constant M decreased less than 2.5 times
in relationship to its value in normal conditions (see
above). This result might be important in the understand-
ing of many immune suppression/enhancement phe-
nomena related to certain exercise protocols. Notice that
the f* value by itself do not tell anything about the change
in the individual value of each rate constant.

Discussion
The compartmentalization of blood leukocytes in two
sub-pools is an important feature of these cells. For exam-
ple, the marginal pool may acutely function as an extra
source of cells at increased demand conditions. In this
sense, knowledge about the rate constants governing the
transit between the sub-pools may prove relevant in stud-
ies that approach both physiological and pathological sit-
uations. In the present manuscript we provide the
theoretical background to support empirical studies relat-
ed to the calculation of these rate constants.

From the general perspective of an extensive model, we
first showed that this model corresponds to what is exper-
imentally found in terms of existence and stability of an
equilibrium point in the variables (the sub-pools). After
that, we reduced the model to a compact one, concerning
only the two blood sub-pools of interest here. Within the
context of the compact model, it was shown how an im-
pulsive function (e.g., an intravenous epinephrine bolus
injection) perturbing the parameters (the rate constants of
margination and return to circulation) can be translated
to a perturbation in the variables. Then, the returning of
the variables to their equilibrium values allows the esti-
mation of the rate constants. This was done by the use of
a second-order differential equation (see Methods). From
that equation, the fast-decay component was identified
and the corresponding eigenvalue contains the rate con-
stants to be calculated.

The present study demonstrates, for the first time, how to
adequately and completely estimate the rate constants of
margination and return to circulation of white blood cells.
Notice that first-order differential equations (as equation
5) were employed before in gross estimates of these rate
constants (e.g., [19]). However, the constant then com-
puted comprised the whole eigenvalue, without discrimi-
nating its parts. In other words, its was not recognized that
the computed value should be partitioned into three com-
ponents: R, M and SB.

The model also allows to establish the relationship be-
tween R and M. This relationship includes the SB constant
and the ratio between the marginal and the circulating
sub-pools, f* (see equation 4). The need to take into ac-
count the f* value in the estimation of the constants is an-
other important aspect for the first time presented.

Therefore, the model leads to a more precise evaluation
on how imposed disturbances interfere with the dynamics
of the blood sub-compartments and thus increase our un-
derstanding of the physiology/pathophysiology of many
conditions. Two imaginary situations of this kind were
constructed and analyzed as examples of the use of the
present model (see "Worked Examples" II and III).

Conclusions
This study provides a complete model to approach the es-
timation of rate constants of margination and return to
circulation of with blood cells. It shows, for the first time,
how the value empirically found should be partitioned in
order to adequately obtain the desired rate constants. In
this sense, we were able to recognize that both an exit rate
constant to tissues and the ratio between marginated and
circulating cells should be taken into account in the com-
putation procedure.

Methods
1. Equilibrium point and its stability
The equilibrium point of the system described by equa-
tions 1a-d is found by setting all the derivatives to zero
and computing the corresponding values of the variables
that lead to such a condition. Without loss of generality,
the inflammatory/infectious factors can be taken as zero.
Therefore, the equilibrium point (denoted by *) corre-
sponds to the following values:

Conditions of existence: (1) Z > D; and (2) K(Z-D) > P2G.
The first condition reflects that tissue leukocytes must die
at a rate higher than their own local replication otherwise
their population would increase forever. The second con-
dition is similar to the first in the sense that it reflects that
the self-stimulatory loop must be lower than the loss loop
of the system.

The stability of the equilibrium point is verified by the
construction of the determinant of the matrix of the coef-
ficients of the variables of the equations of the system
[17,18,20]. In order to be asymptotically stable, all the ei-
genvalues (roots) of the characteristic polynomial of the
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matrix must have real parts lower than zero. Considering
that the system has four equations, the characteristic pol-
ynomial is of the 4th-order with the following general for-
mula:

λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0

where λ is an eigenvalue of the equation (note that the
equation has 4 roots). The coefficients (ai) come from the
parameters of the system. To have all the eigenvalues with
real part lower than zero, the Routh-Hurwitz conditions
must verify. In short:

1A. All ai must be greater than zero. This condition is true
for the system.

1B. a1a2 > a3. This condition is true for the system.

1C. a3(a1a2 - a3) > a4a1
2. This condition is not easily veri-

fied analytically. Therefore, we performed a numerical
analysis. Random values were assigned to the parameters
(conditions of existence of the equilibrium point verified,
see above) and the condition 1C checked (pseudo-ran-
dom number generator normally distributed built-in
function of MatLab 5.3, The MathWorks, Natick MA). This
procedure was taken 150,000 times by a routine specifi-
cally written for it and the condition always verified true.
Therefore, the equilibrium point seems asymptotically
stable.

The main point in this sub-section is to realize that both
φT

* and α* are not affected by R and/or M. This is what as-
sures the results concerning the compact model below.

2. The compact model and its second-order differential 
equation form
Considering that production rate and inflammatory/in-
fectious factors would not change in a short time interval,
the extensive model allows the blood pool to be treated as
having no loop connection to the rest of the system (see
equations 2a and 2b). The determinant of the Jacobian
matrix of the compact model (i.e., the sub-system repre-
sented by equations 2a and 2b) is to set to zero:

Consider now a "push" in φc
* (and φm

*) in such a way
that:

 is, therefore, the time course of the perturbation
around the equilibrium point of φc. Equation 8 is homo-
geneous for :

Taking into account that M = (R + SB)f* (see equation 4),
the eigenvalues of equation 10 are:

Notice that: (a) both eigenvalues are pure real (this means
that the equilibrium point is attained without oscillations
in the variables); and (b) both eigenvalues are negative
(the equilibrium point is asymptotically stable). Given
that λ2 < λ1, λ2 is the fast component of the process of re-
suming the equilibrium value φc

* (see sub-section "the de-
marginated state and its return to the equilibrium
condition"). The value of λ2 is -(R + SB)(f* + 1). This value
is presented in equation 6.

List of abbreviations
φc: the number of cells (or concentration) in the circulat-
ing pool;

φm: the number of cells (or concentration) in the marginal
pool;

φT: the number of cells (or concentration) in solid tissues;

α: quantity (or concentration) of self-regulatory factors;

R: rate constant of return to circulation;

M: rate constant of margination;

SB: rate constant of exit to tissues from the blood pool;

P: bone marrow production rate of the cells;

f*: the ratio between the marginal and the circulating
pools at steady-state condition.
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