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Abstract

Background: Recent data suggest that canalicular bile secretion involves selective expression and
coordinated regulation of aquaporins (AQPs), a family of water channels proteins. In order to
further characterize the role of AQPs in this process, an in vitro cell system with retained polarity
and expression of AQPs and relevant solute transporters involved in bile formation is highly
desirable. The WIF-B cell line is a highly differentiated and polarized rat hepatoma/human fibroblast
hybrid, which forms abundant bile canalicular structures. This cell line has been reported to be a
good in vitro model for studying hepatocyte polarity.

Results: Using RT-PCR, immunoblotting and confocal immunofluorescence, we showed that WIF-
B cells express the aquaporin water channels that facilitate the osmotically driven water
movements in the liver, i.e. AQP8, AQP9, and AQPO; as well as the key solute transporters
involved in the generation of canalicular osmotic gradients, i.e., the bile salt export pump Bsep, the
organic anion transporter Mrp2 and the chloride bicarbonate exchanger AE2. The subcellular
localization of the AQPs and the solute transporters in WIF-B cells was similar to that in freshly
isolated rat hepatocytes and in intact liver. Immunofluorescent costaining studies showed
intracellular colocalization of AQP8 and AE2, suggesting the possibility that these transporters are
expressed in the same population of pericanalicular vesicles.

Conclusion: The hepatocyte cell line WIF-B retains the expression and subcellular localization of
aquaporin water channels as well as key solute transporters for canalicular bile secretion. Thus,
these cells can work as a valuable tool for regulatory and mechanistic studies of the biology of bile
formation.

Background plasma membrane domains. Bile secretion involves the
Hepatocytes are polarized epithelial cells that possess well ~ movement of water across hepatocyte plasma membrane
defined apical (canalicular) and basolateral (sinusoidal)  domains in response to transient osmotic gradients
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generated by active solute transport into the canalicular
space of bile acids, glutathione and bicarbonate [1]. The
main canalicular solute transporters are the bile salt
export pump Bsep, the organic anion transporter Mrp2
and the chloride bicarbonate exchanger AE2 [2,3].

We and others recently reported that hepatocytes express
aquaporin (AQP) water channels [4-10], a family of inte-
gral membrane proteins that increase cell membrane
water permeability facilitating passive osmotically driven
water movement [11,12]. In hepatocytes, the water chan-
nels aquaporin-8 (AQP8) and aquaporin-0 (AQPO) are
primarily located within the cell in a vesicular compart-
ment, and AQP8 redistributes to the canalicular mem-
brane under a choleretic stimulus [5,10,13]. AQPS8 it was
recently described also localized in mitochondria [14].
Aquaporin-9 (AQP9) is found principally on the basola-
teral membrane [10]. Our previous studies suggest that
water channels play an important role in the transcellular
transport of water during primary bile secretion by hepa-
tocytes [5,10,13,15,16].

Unfortunately, the bile formation process is difficult to
study in vitro. In primary cultures of rat hepatocytes,
downregulation of both basolateral and canalicular solute
transporters occurs [17] and bile acid uptake gradually
decreases and disappears after 1 to 4 days [18]. Moreover,
in freshly isolated rat hepatocytes, canalicular bile acid
secretion appears limited [19]. In addition, the vectorial
transport of solutes is lost in many hepatoma cell lines
such as HepG2 [20,21], HTC [22], and Fao [23].

The WIF-B cell line is a highly differentiated and polarized
rat hepatoma/human fibroblast hybrid, which forms bile
canaliculi-like structures [24]. This cell line has been
shown to be a good model for studying hepatocyte polar-
ity [25,26], protein secretion [24], bile acid transport [18]
and protein transport [27]. Furthermore, WIF-B cells
express the basolateral Na+*-taurocholate cotransporter,
Ntcp [28] and the canalicular conjugate export pump,
Mrp2 [29].

To further explore the usefulness of the WIF-B cell line as
an in vitro model for regulatory and mechanistic studies
of bile secretion biology, we investigated the presence and
localization of aquaporins and the principal solute trans-
porters involved in canalicular bile formation.

Results

Expression of aquaporins and canalicular solute
transporters in WIF-B cells by RT-PCR

RT-PCR was run for each of the three AQPs and the three
solute transporters on total RNA derived from WIF-B cells.
cDNA from freshly isolated rat hepatocytes was used as
positive control. As shown in Figure 1, WIF-B cells express
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RT-PCR for aquaporins and canalicular solute trans-
porters in WIF-B cells. Total RNA from WIF-B cells was
reverse transcribed using random primers and then PCR-
amplified with primers designed to amplify a nonconserved
region of each AQP and solute transporter cDNA. Isolated
rat hepatocyte cDNA were used as positive controls. Lane |,
negative control; lane 2, positive control; lane 3, WIF-B cells.

mRNA of rat AQP0O, AQP8 and AQPY (Figure 1A) and
AE2, Mrp2 and Bsep (Figure 1B). The PCR products were
sequenced and the identities of the amplicons, verified by
data base homology searches (BLAST; NCBI, National
Institutes of Health), were consistent with the predicted
rat genes.

Expression of aquaporins and canalicular solute
transporters in WIF-B cells by immunoblotting

As shown in Figure 2A, WIF-B cells express AQP0, AQPS,
and AQP9 proteins. WIF-B plasma and intracellular mem-
branes, as well as hepatocyte homogenates showed a 28
kDa band on the immunoblotting for AQPO. The immu-
noblot for AQP8 shows the presence of a 34 kDa band on
WIF-B plasma and intracellular membranes. AQP9 is also
positive in the plasma membrane fraction of WIF-B cells,
showing the 32 kDa band. Figure 2B shows the immuno-
blotting for the three solute transporters: AE2 (170 kDa)
and Bsep (160 kDa) are present on the plasma membrane
of WIF-B and, as described [29], Mrp2 (190 kDa) is also
present in the cell line.

Confocal immunofluorescence

Immunofluorescent staining of WIF-B cells further con-
firmed the expression of the three AQPs (Figure 3). The
subcellular localization is similar to that of rat
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Figure 2

Immunoblots for aquaporins and canalicular solute transporters in WIF-B cells. A, 50 ug of plasma (PM) and intra-
cellular (IM) membranes from WIF-B cells were loaded onto 12% SDS-polyacrylamide gels. Inmunoblots were performed
using affinity-purified rabbit anti-AQP primary antibodies and goat anti-rabbit secondary antibodies and visualized via chemilu-
minescence. B, 50 ug of PM and IM from WIF-B cells were loaded onto 8% SDS-pliacrylamide gels. Immunoblots were per-
formed using affinity-purified goat anti-Mrp2 or Bsep and rabbit anti-AE2. Rat hepatocyte homogenate (20 ig) were used as

positive controls.

hepatocytes, i.e. AQPO mainly intracellular, AQP8 mostly
in intracellular vesicular structures throughout the cytosol
and AQP9 on the basolateral membrane. The immunoflu-
orescence for AE2, Bsep and Mrp2 showed pericanalicular
localization (Figure 3). Immunofluorescent costaining
was performed for AQP8 and AE2. These molecules
showed colocalization (Figure 4), suggesting the presence
of a population of pericanalicular vesicles containing
both AQP8 and AE2.

Discussion

The major finding reported here relate to the expression
and subcellular localization of aquaporin water channels
in the WIF-B cell line. Using RT-PCR, immunoblotting

and confocal immunofluorescence we showed that (i)
WIE-B cells express the aquaporin water channels that
facilitate the osmotically driven water movements, i.e.
AQP8, AQP9, and AQPO; as well as the key solute trans-
porters involved in the generation of the canalicular
osmotic gradients, i.e., the bile salt export pump Bsep, the
organic anion transporter Mrp2 and the chloride bicarbo-
nate exchanger AE2. (ii) The subcellular localization of
the AQPs and the solute transporters in WIF-B cells was
similar to that in rat isolated hepatocytes and in whole
liver. (iii) Immunofluorescent costaining studies showed
intracellular colocalization of AQP8 and AE2, suggesting
the possibility that these transporters are expressed in the
same population of pericanalicular vesicles.
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Figure 3

Confocal immunofluorescence for aquaporins and solute transporters in WIF-B cells. WIF-B cells were fixed, per-
meabilized, and labeled with anti-AQPs, AE2, Mrp2 or Bsep. Fluorescence localization was viewed by laser scanning confocal
microscopy (see "Materials and Methods" for details). *, bile canaliculi structures.

Hepatocyte bile secretion is formed by passive movement
of water from plasma to the bile canaliculus in response
to osmotic gradients established by the active secretion of
solutes. The biliary excretion of bile salts, via the bile salt
transporter Bsep, glutathione, via the organic anion trans-
porter Mrp2, and HCOj, via the CI-/HCO; exchanger
AE2, are thought to be the major osmotic driving forces
for canalicular bile flow [1]. Conceptually, the generation
of bile flow is ultimately dependent on the molecular and
functional expression of these transporters on the canalic-
ular plasma membrane domain. AQPs are present in
hepatocytes at both apical and basolateral plasma mem-
brane domains as well as in intracellular vesicle compart-
ments. Two of these AQPs can account for the water
permeability of both hepatocyte plasma membrane
domains, AQP8 modulating mainly the canalicular trans-
port of water, and AQP9 facilitating its basolateral move-
ment [5,10,13,15,16].

In order to further characterize the role of aquaporins in
bile secretion, an in vitro cell system with retained polarity
and expression of AQPs and the main solute transporters
involved in bile formation is highly desirable. The present
work shows that WIF-B cells meet these criteria, i.e.
express the key solute transporters involved in the osmotic
gradient generation (AE2, Bsep and Mrp2) and the chan-
nels that facilitates plasma membrane water movement
(AQP8 and AQP9).

The WIFE-B hybrid cell line stably retains all rat chromo-
somes, and only a dozen of human chromosomes [30].
The AQP8, AE2, Bsep, and Mrp2 genes have been mapped
on the human chromosomes 16 [31], 7 [32], 2 [33], and
10 [34], respectively, which are not retained by the WIF
line [35,36]. Furthermore, it was described that WIF-B
cells express only the rat homolog of the bile salt trans-
porter Ntcp [28], consistent with the absence of human
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Figure 4
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Co-immunostaining of AQP8 and AE2 by confocal immunofluorescence. WIF-B cells were fixed, permeabilized, and
labelled simultaneously with rabbit anti-AE2 and goat anti-AQP8. Fluorescence localization was viewed by laser scanning confo-
cal microscopy (see "Materials and Methods" for details). *, bile canaliculi structures.

chromosome 14, on which Ntcp has been mapped [37].
Therefore, the AQP8, AE2, Bsep, and Mrp2 expressed by
these cells should be the rat genes. By contrast, the AQPO
and AQP9 genes are located on human chromosomes 12
and 15, respectively [38,39], which are present in WIF
cells [35,36]. Thus, WIF-B cells may also express human
AQPO and AQP9.

The subcellular localization of the AQPs in WIF-B cells is
similar to that found in isolated hepatocytes and liver
from rat. AQPO was found mainly intracellular and AQP9
exclusively on basolateral membranes. AQP8 showed
mostly an intracellular vesicular structures localization,
which could be of potential interest for further studies on
the mechanisms involved in the hormone-regulated traf-
ficking of AQP8 to the canalicular plasma membrane
domain [5,10,13,40].

The canalicular/pericanalicular localization of the solute
transporters is consistent with that described for rat liver
or isolated hepatocytes. AE2 has been localized to the
canalicular membrane domain [41,42]. Nevertheless, the
canalicular activity of AE2 is increased in response to stim-
ulation with cyclic AMP, and this increased activity can be
blocked with colchicine, suggesting the microtubule-
dependent targeting of pericanalicular vesicles containing
this exchanger to the canalicular domain [43]. Rat liver
Bsep is responsible for the biliary excretion of bile acids
and therefore is key to the elaboration of canalicular bile
[2]. Immunogold electron microscopy detection of Bsep
revealed that the distribution of Bsep in rat hepatocytes is
not restricted to the canalicular membrane, but also

detected in vesicles close to the bile canaliculus [44]. Per-
icanalicular distribution of Bsep was also demonstrated
by immunofluorescence staining of isolated rat hepato-
cyte couplets [45]. We found that Mrp2, responsible for
the transport into bile of a variety of amphiphilic organic
anions [2], is mainly localized on pericanalicular vesicles.
This observation does not fully agree with a previous work
showing an exclusively canalicular membrane localiza-
tion of Mrp2 in WIF-B cells [29]. The fact that Mrp2
showed a different localization in our hands could be
explained by different culture conditions. Furthermore,
immunogold electron microscopy detection of Mrp2 in
rat liver revealed that over 50% of Mrp2 resides in intrac-
ellular vesicles close to the canalicular membrane [46];
and pericanalicular vesicular distribution was demon-
strated by confocal immunofluorescence in isolated rat
hepatocyte couplets [45]. This pericanalicular localization
gives rise to the possibility of studying transport traffick-
ing to the apical membrane.

It is known that the hormone glucagon stimulates bile
secretion [47,48]. As we previously described, glucagon is
able to increase the osmotic water permeability of hepato-
cytes by triggering the translocation of AQP8 vesicles to
the plasma membrane, specifically to the canalicular
domain [13]. Although the actual osmotic gradients
involved in glucagon-induced choleresis are unknown,
these transient gradients are most likely created by the
facilitated transport of HCO; via the canalicular Cl/
HCO; exchanger AE2 [47,48]. There is evidence to suggest
that glucagon is also able to stimulate the vesicle traffick-
ing of AE2 to the hepatocyte plasma membranes [43,48].
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Since the immunofluorescence for AQP8 and AE2 showed
colocalization, is attractive to speculate that the solute
transporter and the water channel could be packaged in
the same population of vesicles conforming a bile secre-
tory unit as has been observed for AQP1, AE2 and the
cystic fibrosis transmembrane regulator Cl- channels in
cholangiocytes [49]. Thus, the existence of a novel trans-
porting organelle containing functionally related pro-
teins, that can account for solute-driven water transport,
could be proposed in hepatocytes. This organelle could
contain flux proteins playing integral roles in hormone-
induced bile secretion.

Conclusion

Our study provides the first evidence of a hepatocyte cell
line that retains the expression and subcellular localiza-
tion of aquaporin water channels, as well as key solute
transporters for canalicular bile formation, turning these
cells into a valuable tool for regulatory and mechanistic
studies of the bile formation biology.

Methods

Cell culture

WIE-B cells, kindly provided by Dr. Ann Hubbard (Johns
Hopkins University, Baltimore, MD), were grown at 37°C
under 5% CO, in modified Ham's F12 medium supple-
mented with 5% fetal calf serum and 10 umol/L hypoxan-
thine, 0.04 pmol/L aminopterin, and 1.6 pmol/L
thymidine as described [24]. Cells were plated onto plas-
tic dishes or glass coverslips at 3.8 x 104 cells/cm2. We
used 10 to 14 day old cultures in all experiments, the time
point at which the cells reached their maximal density and
polarity [24].

RNA isolation
Total RNA was extracted from WIF-B cells or freshly iso-
lated rat hepatocytes using Tri-Reagent (Sigma). Cells

Table I: Primers used for AQPs and solute transporters expression

http://www.biomedcentral.com/1472-6793/5/13

were lysed in 1 ml of Tri-Reagent/10 x 10° cells with 5 pl
of Glyco-Blue (Ambion Inc., Austin, TX) added as a co-
precipitant and stored at room temperature for 5 min.
After addition of 0.1 ml of 1-bromo-3-chloro-propane/1
ml of Tri-Reagent, the samples were vortexed, incubated
for 15 min at room temperature, and centrifuged at
12,000 x g for 15 min at 4°C. The upper, aqueous phase
was collected and transferred to a new tube; to this, 0.5 ml
of isopropanol was added per 1 ml of Tri-Reagent used for
the initial lysis. The samples were incubated for 10 min
and centrifuged at 12,000 x g for 15 min at 4°C. After
removing the supernatant, the RNA pellet was washed
with 1 ml of 75% ethanol and repelleted by centrifugation
at 12,000 x g for 15 min at 4°C. RNA was resuspended in
RNA Secure solution (Ambion), and the concentration
and purity were determined by spectrophotometry.

Reverse transcription-polymerase chain reaction

5 ug of total RNA was reverse transcribed using an avian
myeloblastosis virus reverse transcriptase system
(Promega, Madison, WI). RNA was first incubated for 10
min at 70°C. The reaction mixture included reverse tran-
scription buffer, 25 mM MgCl2, 10 mM deoxynucleotide
triphosphates, avian myeloblastosis virus reverse tran-
scriptase, RNasin ribonuclease inhibitor, and random
primers in a final volume of 95 pl. This mixture was added
to the total RNA and incubated for 10 min at room tem-
perature and then 1 h at 42°C. Heating to 95°C for 5 min
stopped the reaction. The AQPs, Mrp2, Bsep and AE2
cDNA were amplified using the polymerase chain reaction
with specific primers for rat genes (Table 1). cDNA from
freshly isolated rat hepatocytes and H,O,4 were used as
positive and negative controls, respectively. The PCR
products were electrophoresed in 1% agarose gels, and the
bands were visualised by ethidium bromide staining.
Sequencing was performed on all positive PCR products
(Mayo Molecular Core Facility, Rochester, MN) to con-

Gene Primers (forward; reverse) Amplicon size, bp cDNA sequence location

AQPO 5'-acggctcaagagtgtttctga-3' 189 669-689
5'-tccccacagtctctttcttcat-3' 857-836
AQP8 5'-aagaccatgctgctaattec-3' 275 423-442
5'-tccacaatgacagagaaacc-3' 697-678
AQP9 5'-tgttgtcattagcctectgate-3' 356 736-757

5'-tgaagaaagaactggatgaacg-3' 1091-1070

MRP2 5'-ctggttggaaacttggtcgt-3' 172 3719-3739

5'-caactgccacaatgttggte-3' 3890-3870

BSEP 5'-cactggccttctggtatggt-3' 225 1275-1294

5'-gcttgtagecgtctectgac-3' 1499-1479

AE2 5'-tctcgttctgcaagageaacc-3' 270 2527-2547

5'-ttgttactgctgetgtctgee-3' 2797-2777
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firm the identity of the amplified genes.

Preparation of plasma and intracellular membranes

Cells were washed and sonicated in 0.3 M sucrose con-
taining 0.1 mM phenylmethylsulfonyl fluoride and 0.1
mM leupeptin. Plasma and intracellular membranes were
obtained by differential centrifugation, as previously
described [5]. Proteins in the membrane fractions were
assayed according to Lowry et al. [50], using bovine serum
albumin as standard.

Immunoblotting

Solubilized membrane fractions were subjected to SDS-
polyacrylamide gel electrophoresis and transferred to pol-
yvinyldifluoride membranes. After blocking, blots were
incubated overnight at 4 ° C with affinity-purified antibod-
ies against AQPO, AQP8, AQP9 (1 ug/ml; Alpha Diagnos-
tics International), AE2 (5 ug/ml; Alpha Diagnostics
International), MRP2 or BSEP (5 ug/ml; Santa Cruz Bio-
technology). The blots were then washed and incubated
with horseradish peroxidase-conjugated goat anti immu-
noglobulin, and bands were detected by an enhanced
chemiluminescence detection system. Autoradiographs
were obtained by exposing polyvinyldifluoride mem-
branes to Kodak XAR film.

Immunofluorescence and confocal microscopy

After culturing, cells were fixed with 2% paraformalde-
hyde for 10 min at room temperature, permeabilized with
0.2 % Triton X-100 for 2 min, and incubated overnight at
4°C with affinity-purified antibodies (10 pug/ml AQPO, 10
pug/ml AQPS8, 10 ug/ml AQP9, 10 pg/ml AE2, 20 pg/ml
Mrp2 or 20 pg/ml Bsep). After washing, coverslips were
incubated with Alexa Fluor 488 or 594 conjugated sec-
ondary antibodies for one hour, and mounted with Pro-
Long. Fluorescence localization was detected by confocal
microscopy with a laser scanning microscope (Carl Zeiss
LSM-510). Images were obtained with the same confocal
settings for each set of experiments. With these settings no
autofluorescence was detected. Controls using omission
of primary or secondary antibodies revealed no labeling.
Images were processed using Adobe Photoshop software.
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