BMC PhVSiOIogy BioM\ecI?Central

Research article

Butyrate ingestion improves hepatic glycogen storage in the re-fed
rat

Marie-Christine Beauvieux*!, Hélene Roumes!, Nadege Robert!,

Henri Ginl2, Vincent Rigalleau!2 and Jean-Louis Gallis!

Address: 'Centre de Résonance Magnétique des Systemes Biologiques, UMR 5536 CNRS-UB2, 146 rue Léo Saignat, F-33076 Bordeaux Cedex
France and 2Service de Nutrition et Diabétologie, Hopital Haut-Lévéque, Avenue de Magellan, F-33604 Pessac Cedex France

Email: Marie-Christine Beauvieux* - jean.louis.gallis@free.fr; Hélene Roumes - hroumes@neuf.fr;
Nadege Robert - Nadege.Robert@bordeaux.inserm.fr; Henri Gin - henri.gin@chu-bordeaux.fr;
Vincent Rigalleau - vincent.rigalleau@wanadoo.fr; Jean-Louis Gallis - jean.louis.gallis@free.fr

* Corresponding author

Published: 10 October 2008 Received: 12 March 2008
BMC Physiology 2008, 8:19  doi:10.1186/1472-6793-8-19 Accepted: 10 October 2008
This article is available from: http://www.biomedcentral.com/1472-6793/8/19

© 2008 Beauvieux et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Butyrate naturally produced by intestinal fiber fermentation is the main nutrient for
colonocytes, but the metabolic effect of the fraction reaching the liver is not totally known. After
glycogen hepatic depletion in the 48-hour fasting rat, we monitored the effect of (butyrate 1.90 mg
+ glucose 14.0 mg)/g body weight versus isocaloric (glucose 18.2 mg/g) or isoglucidic (glucose 14.0
mg/g) control force-feeding on in vivo changes in hepatic glycogen and ATP contents evaluated ex
vivo by NMR in the isolated and perfused liver.

Results: The change in glycogen was biphasic with (i) an initial linear period where presence of
butyrate in the diet increased (P = 0.05) the net synthesis rate (0.20 £ 0.01 pmol/min.g’! liver wet
weight, n = |5) versus glucose 14.0 mg/g only (0.16 = 0.01 pmol/min.g! liver ww, n = 14), and (ii) a
plateau of glycogen store followed by a depletion. Butyrate delayed the establishment of the
equilibrium between glycogenosynthetic and glycogenolytic fluxes from the 6t to 8t hour post-
feeding. The maximal glycogen content was then 97.27 + 10.59 umol/g liver ww (n = 7) at the 8t
hour, which was significantly higher than with the isocaloric control diet (64.34 + 8.49 umol/g, n =
12, P = 0.03) and the isoglucidic control one (49.1 1 + 6.35 umol/g liver ww, n = 6, P = 0.003). After
butyrate ingestion, ATP content increased from 0.95 + 0.29 to a plateau of 2.14 £ 0.23 umol/g liver
ww at the 8t hour post-feeding (n = 8) [P = 0.04 versus isoglucidic control diet (1.45 + 0.19 umol/
g, n = 8) but was not different from the isocaloric control diet (1.70 £ 0.18 pmol/g, n = 12)].

Conclusion: The main hepatic effect of butyrate is a sparing effect on glycogen storage explained
(i) by competition between butyrate and glucose oxidation, glucose being preferentially directed to
glycogenosynthesis during the post-prandial state; and (i) by a likely reduced glycogenolysis from
the newly synthesized glycogen. This first demonstration of the improvement of liver glycogen
storage by acute butyrate supply may be an important contribution to explaining the beneficial
effects on glucose homeostasis of nutritional supply increasing butyrate amount such as fiber diets.
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Background

Carbohydrates are stored as glycogen in both muscles and
the liver. As the first relay station for processing dietary
information, the liver contains the whole biochemical
machinery for both glucose and lipid storage and disposal
[1]. Liver glycogen is the first defensive line when glyc-
emia falls, and is thus the major source of circulating glu-
cose except within 2-4 hours after a meal, the so-called
postprandial period. These metabolic ways are controlled
by the insulin level, insulin having several hepatic effects
such as stimulation of glycogenosynthesis and glycolysis.
The net effect is clear: when the supply of glucose is abun-
dant, insulin "tells" the liver to bank as much of it as pos-
sible for subsequent use. In the absence of insulin, liver
glycogenosynthesis ceases and the enzymes responsible
for glycogen breakdown become active.

It has been proposed that the hepatic glycogen store may
be influenced by lipids [2]. Reduced hepatic glycogen syn-
thesis is thus an important characteristic of type 1 [3], type
2 [4] and MODY - 2 [5] diabetes in humans. Although
long-chain free fatty acid are well known to induce
peripheral insulin resistance and reduce muscle glycog-
enosynthesis [6], they have been reported to favor the
sparing of hepatic glycogen in fasting humans [7], this
increase being counterbalanced by acipimox [8], which
inhibits lipolysis in peripheral tissues and induces a large
reduction in circulating serum-free fatty acids. On the
other hand, it has recently been reported that isolated liver
perfusion with saturated or unsaturated FFAs reduced
insulin signaling protein phosphorylation without affect-
ing glycogen content [9]. It has been suggested that differ-
ential action of FFAs on glucose homeostasis could be
linked to their nature [10]. In fact, peroxisome prolifera-
tor-activated receptor-o(PPAR-o), which is highly
expressed in the liver, regulates fat metabolism and
improves insulin sensitivity. Polyunsaturated FFAs are
stronger inducers of PPAR-a activation than saturated
FFAs [11]. It is unknown whether some effects may occur
with short-chain fatty acids (SCFA) such as butyrate.
Butyrate is a natural nutriment physiologically produced
from intestinal fiber fermentation and found in foods
such as butter. Butyrate is also the main nutriment for
colonocytes. SCFA are used in artificial nutrition to allow
successful transition to enteral feeding by maximizing the
intestinal absorptive area in short bowel syndrome [12].
Moreover, recent studies on previously undescribed
butyrate-producing bacteria from the human colon will
help to unravel the effects of diet upon health, including
microbial interactions with the immune system, and will
help in the design of prebiotic or probiotic strategies for
stimulating sub-optimal butyrate synthesis in the large
intestine [13]. Besides the local effect, the remaining frac-
tion reaches the liver through the portal vein to be metab-
olized. An almost 100% removal of butyrate by the liver
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has thus been evidenced in rats adapted to a high-fiber
diet [14], suggesting better knowledge of the butyrate
hepatic metabolism.

We recently reported a positive linear insulin- and glu-
cose-dependent relationship between the net fluxes of gly-
cogen and ATP in isolated perfused livers of fed rats [15].
This led us to hypothesize that some specific nutrients
could interfere with hepatic glycogen synthesis, in that
they modify the liver ATP content. Butyrate induced some
changes in energetic metabolism such as (i) a rapid
increase in the net rate of liver ATP consumption obtained
ex vivo in the isolated and perfused liver [16], and (ii) a
77% decrease in the oxidative phosphorylation yield
whereas respiration was greatly stimulated [17]. However,
it is unknown whether butyrate influences the hepatic gly-
cogen content. The purpose of the present study was
therefore to explore the effect of butyrate used as a nutri-
ent on in vivo ATP metabolism and glycogen storage in rat
liver. After glycogen hepatic depletion by prolonged fast-
ing, we used NMR to investigate the effect of force-feeding
with glucose alone or glucose plus butyrate, in isocaloric
and isoglucidic conditions, on the kinetic of (i) liver gly-
cogen repletion and (ii) the change in ATP content. The ex
vivo measurements were performed on the perfused and
isolated organ, excised at different times post force-feed-
ing.

Results

Kinetic of liver glycogen repletion after feeding with
different diets

| /Validation of NMR measurement

Liver glycogen content of rats fed ad libitum was 75 + 8
pmol/g liver wet weight (ww) under glucose+insulin per-
fusion (n = 12) (Fig 1A). The 13C C-1 glycogen signal was
not detected in the liver after 48 hr of starvation (Fig 1B)
since 13C NMR sensitivity was limited to about 1 pmol/
liver.g ww. To validate NMR measurements, we compared
them with enzymatic analyses on the liver extracts (Fig 2).
In fasting animals, the liver glycogen content determined
by biochemical assay was 0.85 + 0.34 umol/g liver ww (n
= 5). There was also a decrease in hepatic fatty acid con-
tent after 48 hr starvation, as previously reported [18].

Whatever the diet used, glycogen content increased regu-
larly with time after the first 30 min post force-feeding.
Glycogen content and time evolution were not different
between in vitro enzymatic measurements and ex vivo
NMR experiments. Two typical 13C NMR spectra of liver
isolated at the 6t hour post feeding with glucose alone or
glucose+butyrate are shown in Fig. 1C and 1D, respec-
tively. An increase in fatty acid content was also observed
after feeding, as already described [18].

Page 2 of 12

(page number not for citation purposes)



BMC Physiology 2008, 8:19 http://www.biomedcentral.com/1472-6793/8/19

1 T 1 T T T T
180 160 140 120 100 80 60 40 ppm

Figure |

Natural abundance '3C NMR typical spectra of isolated livers from rats in different nutritional conditions. Livers
were perfused and isolated from a rat (A) fed ad libitum, (B) starved for 48 hr, (C) 6t hour post force-feeding with glucose 18.2
mg/g body weight, following 48 hr of fasting and (D) 6t hour post force-feeding with (glucose 14.0 mg + butyrate 1.90 mg)/g
body weight, following 48 hr of fasting. An external silicone reference gives a resonance at 0 ppm. Peak assignments: (a and h)
fatty acids chains; (b) C-1 glycogen; (c) C-la and C-1J glucose (mainly exogenous glucose of the perfusate); (d) glucose and
glycogen (C-3p, C-58 glucose, glycogen; C-2 glucose; C-3a. glucose; C-2, C-5a glucose, C-5 glycogen; C-4a.3 glucose, glyco-
gen); (e) C-6 glucose, glycogen; (f) choline; (g) ethanolamine. The chemical shift scale § is given in parts per million (ppm)
according to: chemical shift (Hz) = § (ppm) x A(MHz), A being the frequency of the spectrometer. The unit ppm is used owing
to the order value (10-6) of a constant characterizing the chemical nature of the nucleus. This scale allows an easy comparison
between spectra obtained in spectrometers operating at different magnetic fields.
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Figure 2

Correlation between the liver glycogen content measured by NMR method and by biochemical assay. m + SEM.
n varied from 4 to 6 for each mean. Ex vivo NMR measurement was performed on isolated perfused livers. Biochemical assay

was performed on their corresponding perchloric extracts.

2/diet A: 14.0 mg glucose/g body weight (Fig. 3)

Starting with an undetectable NMR glycogen content in
the fasting state, a time-dependent linear increase (0.16 +
0.01 pmol/min.g! liver ww) was observed during 300
minutes post feeding. Then a steady state of 55.39 + 8.38
umol/g liver ww (n = 6) was reached between the 5t and
the 6t hour. Thereafter, the glycogen content slowly
decreased (-0.052 + 0.005 pmol/min. g liver ww) to
reach 49.11 + 6.35 pmol/g liver ww (n = 6) at the 8" hour
post feeding.

3/diet B: 18.2 mg glucoselg body weight (Fig. 3)

From the NMR undetectable glycogen content in the fast-
ing state, a time-dependent linear increase (0.20 + 0.01
pmol/min.g! liver ww) was observed during 300 minutes
post feeding. A maximal level of 70.63 + 13.52 umol/g
liver ww (n = 10) was reached at the 6t hour. Thereafter,
the glycogen level slowly decreased (-0.025 + 0.002 pmol/
min.g! liver ww) nearly 2-fold more than in diet A, to
reach 64.24 + 11.68 umol/g liver ww (n = 9) at the 10th
hour post feeding.

4/diet C: (14.0 mg glucose + 1.90 mg butyrate)/g body weight (Fig.
3)

Diets A and C were isoglucidic, while diets B and C were
isocaloric (7.28 cal), diet C containing less glucose (-23%)
than diet B. After ingestion of diet C containing butyrate,
a linear increase in glycogen content (0.20 + 0.01 pmol/
min.g! liver ww, higher than in isoglucidic diet, P = 0.05)

was observed over 8 hours at the same rate as in isocaloric
diet B, despite the slightest glucose content. A maximal
glycogen level of 97.27 + 10.59 pmol/g liver ww (n = 7)
was reached at the 8th hour post feeding, which was signif-
icantly higher (P = 0.03) than in isocaloric diet B (64.34 +
8.49 umol/g liver ww, n = 12) or isoglucidic diet A (P =
0.003). Thereafter, the glycogen content rapidly decreased
at a rate of -0.33 + 0.04 pmol/min.g! ww to reach a level
of 57.59 + 17.80 umol/g liver ww at the 10t hour (n = 9),
a value similar to that in isocaloric diet B.

5/Areas Under the Curves

Areas under the curve (AUCs) highlighted the effects of
glucose and butyrate contents in diet on the glycogen
resynthesis. A significant increase (P = 0.04) was obtained
in AUC Glycogen,,_,,,1n diet B (18.2 mg glucose/g) versus
diet A (14.0 mg glucose/g). A significant increase in AUCs
glycogen in diet C (14.0 mg glucose/g + 1.90 mg butyrate/
g) versus diet A (14 mg glucose/g) was obtained: AUC
Glycogen,,_;¢, P = 0.05, AUC Glycogen,_,,,P =0.02, AUC
Glycogen, 440 P = 0.015. Significant higher values of
AUG:s glycogen in diet C versus diets A and/or B at partic-
ular periods of interest (360-420 min and 420-480 min)
are presented (Fig 4).

Kinetic of liver ATP content after feeding with the different
mixtures (Fig. 5)

The ATP level was 2.69 + 0.35 pumol/gliver ww (n = 12) in
rats fed ad libitum and 0.95 + 0.29 pmol/g liver ww after
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Figure 3

Effect of the presence of butyrate in the diet on the kinetic of in vivo liver glycogen repletion after isoglucidic
or isocaloric force-feedings of re-fed rats. m + SEM. n varied from 6 to 12 for each delay. *P = 0.0l (t-test) at the 7t"hour,
diet A (glucose 14.0) versus diet C (glucose 14.0 + butyrate 1.90), # P = 0.003 at the 8t hour, diet A (glucose 14.0) versus diet
C (glucose 14.0 + butyrate 1.90) and ## P = 0.03 at the 8t hour, diet B (glucose 18.2) versus diet C (glucose 14.0 + butyrate

1.90). Diets are expressed in mg/g body weight.

48 hr fasting (n = 5). Whatever the diet, the ATP content
remained unchanged during the first hour after feeding.

| /diet A: 14.0 mg glucose/g body weight

The ATP content slightly increased (1.2 + 0.2 103 pmol/
min.g! liver ww) after the 1sthour post feeding, from the
basal state to a plateau of 1.35 + 0.17 pmol/g liver ww (n
= 6) reached at the 6t hour.

2/diet B: 18.2 mg glucose/g body weight

The ATP time change was similar to that in diet A, except
that the ATP net flux was 2.3 + 0.4 10-3 pmol/min.g! liver
ww; ATP level reached a plateau of 1.66 + 0.29 umol/g
liver ww (n = 10) at the 6th hour. Thereafter, it remained
stable until the 10t hour post force-feeding.

3/diet C: (14.0 mg glucose + [.90 mg butyrate)/g body weight
From the 1st hour post force-feeding, the ATP content
slightly increased (2.5 + 0.2.10-3 pmol/min.g! liver ww)
to reach a plateau of 2.14 + 0.23 pmol/g liver ww at the 8th
hour post feeding (n = 8) [P = 0.04 versus isoglucidic diet
A (1.45 £ 0.19 pmol/g liver ww, n = 8), but this was not
different from isocaloric diet B (1.70 + 0.18 pmol/g liver
ww, n = 12)]. The ATP content remained stable until the
10th hour post feeding, the presence of butyrate in the diet
inducing a higher ATP level than after the isoglucidic diet
A (P =0.05).

Changes in serum glucose and insulin concentration at the
steady state

In the 48 hr-fasted rats, glycemia and insulinemia were
4.9 + 0.4 mmol/L and 13.8 + 1.9 pUI/L, respectively (n =
5). In the fed rats, glycemia was similar with the glu-
cose+butyrate diet C (10.25 + 0.8 mmol/L, n = 4) and iso-
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Figure 4

Areas Under the Curves of in vivo liver glycogen repletion for time intervals of interest in re-fed rats. m + SEM.
n varied from 6 to 10 for each delay. Diet B (18.2 mg glucose/g) versus diet A (14.0 mg glucose/g): §P = 0.05. Diet C (14.0 mg
glucose/g + 1.90 mg butyrate/g) versus diet A (14.0 mg glucose/g): # P = 0.02, ## P = 0.004. Diet C (14.0 mg glucose/g + 1.90
mg butyrate/g) versus diet B (18.2 mg glucose/g): * P = 0.04. Diets are expressed in mg/g body weight.

caloric glucose diet B (9.5 + 0.5 mmol/L, n = 4) at the
plateau of glycogen content, whereas insulinemia was
lower (P = 0.04) with the glucose+butyrate diet (17.3 *
2.3 pUI/L, n = 4) than with the isocaloric glucose diet
(23.1 £ 3.1 pUI/L, n = 4). Although we did not directly
measure insulin sensitivity, this decrease in insulin con-
centration whereas glycemia was maintained suggested an
improved insulin sensitivity. Hence, according to the gly-
cemia-to-insulinemia ratio, the peripheral insulin sensi-
tivity was significantly higher at the steady state of liver
glycogen content after feeding with butyrate (diet C) (6.44
+ 0.79 AU, n = 4) compared to the isocaloric glucose diet
B(4.32+0.56 AU, n=4, P=0.009) and to the fasting state
(3.55+0.43 AU, n=5,P=0.011).

Discussion
The initial purpose of this study was to explore the effect
of butyrate, used as a nutrient, on in vivo glycogen storage

and ATP content in the rat liver. The ex vivo evaluations of
the contents were performed on the perfused and isolated
organ excised at different times after force-feedings, to
accurately reflect the in vivo metabolic contents at each
time. In order to mimic physiological conditions and to
avoid a rapid and dramatic decrease of the energetic
metabolism linked to ischemia, the liver was perfused as
previously described [17,19]. The presence of glucose 30
mM and insulin reproduced the post-prandial state in the
portal vein and allowed to maintain the carbohydrate
metabolism [15]. We sought to investigate the effect of
short-chain FA on hepatic glycogen, since contradictory
effects on glycogen storage have been previously reported
for long chain FA [8,9]. Even if propionate, another end-
product of colonic bacterial fermentation, could be an
interesting candidate to study the metabolism of glyco-
gen, the role of this SCFA as a gluconeogenic precursor
would be confusing in this study focused on butyrate (i)
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Figure 5

Kinetic of in vivo liver ATP resynthesis after different force-feedings of re-fed rats. m + SEM. n varied from 6 to 12
for each delay. *P = 0.04 at the 8t hour and **P = 0.05 at the 10% hour (t-test), diet C (glucose 14.0 mg + butyrate 1.90 mg)
versus diet A (glucose 14.0 mg). Diets are expressed in mg/g body weight.

since it is not directly a gluconeogenic substrate and (ii) is
known to directly decrease the ex vivo ATP production
[16,17] affecting thus perhaps the glycogen pathway.

To our knowledge, few studies focused on the kinetic of in
vivo liver glycogen resynthesis in fasting rats over a wide
time range (10 hrs post feeding). Since total glycogen
depletion is an essential factor to evaluate the initial rate
of glycogen resynthesis, we utilized 48-hr starvation in
order to empty the glycogen store because 24-hr starva-
tion does not totally deplete it [20]. Although 48-hr star-
vation has been reported to increase serum FFA [21]
which may interfere with the action of insulin, the dura-
tion of fasting in the present work did not differ between
all experimental groups. The animals were force-fed once
to be sure (i) that all the substrates were ingested and (ii)
that the acute effect of butyrate could be investigated since
absorption of the colonic butyrate was spread over 24 hr,
whilst force-fed butyrate was absorbed within a few hours.
Moreover, this intake way avoided the repulsion linked to
its taste. It is known that this model allows to rigorously

control the animal's consumption of dietary nutrients
[22].

The quantities of butyrate administered (1.90 mg/g body
weight equal to 190 mg for a 100 g body weighted rat) are
not very different from those likely to be produced with a
10% fiber diet or reported to be produced by bacterial fer-
mentation of dietary fiber in the rats [23]. However,
owing to the acidic pH conditions in the stomach acceler-
ating butyrate absorption as protonated form, and if gas-
tric epithelium permeability was elevated, the fraction
reaching the liver could be higher than those arising from
colonic fermentation. In fact, as shown in preliminary
report [24], a change of ATP turnover (with maintain of
ATP content) in the same experimental conditions was
observed 2-3 hr only after the butyrate force-feeding, sug-
gesting that its gastric absorption was not dramatically
rapid.

We distinguished two main phases in the glycogen-stor-
age process that varied with the presence or absence of
butyrate in the diet: (i) an initial period of glycogen reple-
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tion and (ii) a plateau of glycogen content followed by
depletion.

Glycogenosynthesis and glycolysis are the two main
modes of glucose disposal in the liver. Glycogen repletion
showed the well-known glucose dose-dependent increase
in glycogen synthesis, as evidenced with the two different
doses of glucose alone as already reported [20].

Surprisingly, a similar hepatic glycogen synthesis rate
(about 20 pmol/min/g ww) was obtained with (i) the diet
containing 18.2 mg glucose/g body weight and (ii) the
isocaloric diet containing butyrate and a lower concentra-
tion of glucose (14.0 mg/g). To our knowledge there is no
experimental evidence to date a direct stimulation of gly-
cogenosynthesis pathway by butyrate. However in fed rat,
the stimulation of liver lactate utilization by various fatty
acids has been ascribed to a stimulation of gluconeogene-
sis [25,26] and thus the contribution of this latter to gly-
cogenosynthesis cannot be excluded. The other mode of
glucose disposal is its oxidation, so 14.0 mg glucose/g
could theoretically lead to fewer fluxes of both glycolysis
and mitochondrial ATP production than the oxidation of
18.2 mg glucose/g. The observation of a similar hepatic
net flux of ATP production with 18.2 mg glucose/g and
(14.0 mg glucose/g + 1.90 mg butyrate/g) suggests that
butyrate oxidation (within B-oxidation and the tri-carbox-
ylic cycle) partly replaced glucose as fuel in the oxidation
processes, leading to ATP through mitochondrial oxida-
tive phosphorylation. Some of the ATP could be used for
glycogenosynthesis. Moreover, ATP production from glu-
cose oxidation was probably reduced since fatty acids are
generally known to inhibit glycolysis [27], as reported for
butyrate in isolated hepatocytes [28]. Hence it may be
concluded that butyrate induced a hepatic glycogen-spar-
ing effect by reducing glycolysis, the glucose being exclu-
sively involved in glycogenosynthesis during the first 6
hours post feeding. This result is in agreement with a pre-
vious report concerning parenteral nutrition in rats in
which the combinations of glucose and fat had a sparing
effect on body fat and hepatic glycogen [29].

Another mode of glycogen saving could be that butyrate
spares the glycogen store via inhibition of the glycogeno-
lytic flux through two mechanisms: (i) a putative direct
inhibitory effect of butyrate on glycogenolysis and (ii) a
metabolic effect through ATP production, as ATP is
known to have an inhibitory effect on liver phosphorylase
A (and thus on glycogenolysis) [30]. However, the similar
ATP levels and the similar net ATP synthesis rate observed
during the first hours following feeding with or without
butyrate (in isocaloric conditions) are not in favor of this
second hypothesis. After the glycogen repletion step, liver
glycogen content reached a steady state evidencing an
equilibrium between the unidirectional glycogenosynthe-

http://www.biomedcentral.com/1472-6793/8/19

sis flux and the unidirectional glycogenolysis flux. Impor-
tantly, butyrate delayed the establishment of the flux
equilibrium with a higher net glycogen content until the
8th hr post force-feeding. This can only be due to (i) the
maintenance of glycogenosynthesis and (ii) the inhibi-
tion of glycogenolysis, in agreement with recent data
showing that in type 2 diabetes mellitus patients, free fatty
acids improve glucoregulation merely through modula-
tion of the rate of glycogenolysis [31]. Further studies are
required to confirm the latter hypothesis. A better under-
standing of the mechanistic aspects of butyrate hepatic
effect may implied evaluation of changes of uridine
diphosphate (UDP)-glucose, glucose-1-phosphate (G1P)
or glucose-6-phosphate (G6P), as important metabolic
crossroads of the glycogen pathways. Indeed, hepatic gly-
cogen post-prandial synthesis can be estimated through
the level of UDP-glucose, which requires mass spectros-
copy [32,33]. Moreover, metabolic conditions altering i.e.
the hepatic G6P content were reported to affect glycogen
metabolism through enzymatic regulation [34]. However,
natural abundance NMR spectra in isolated liver were not
sufficiently resolutive to accurately discriminate and
quantify UDP-glucose and phosphorylated monosaccha-
rides.

Butyrate is physiologically produced by the microflora
from the fermentation of dietary fiber and mainly has a
trophic effect. Owing to the capacity of the liver to remove
incoming propionate and butyrate, the hepatic utilization
of the latter is proportional to the digestive supply
[14,35]. Moreover, since butyrate is almost totally
removed in animals on a very high fiber diet (35%) [14],
our data suggest that dietary fiber may have a metabolic
effect on the glucose and glycogen hepatic pathways.

This effect should be added to the known intestinal
mechanical effect of fiber that delays the gastrointestinal
action of amylase. Human studies have already shown
that the glycemic index of carbohydrates is not solely
based on different degrees of digestive absorption, but
may also depend on changes in glucose disposal [36].
Intake of dietary fibers has been reported to be associated
(i) inversely with the probability of having protection
against insulin resistance in non-diabetic patients [37]
and (ii) with enhanced insulin sensitivity in type 2 diabe-
tes, whatever the type of fiber [38]. Rather than a low total
carbohydrate diet, a balanced carbohydrate intake rich in
dietary fiber such as high fruit and vegetable intake [39] or
whole grain cereal products [40] could be protective
against metabolic syndrome. Accordingly, the present
findings demonstrate a possible increase in insulin sensi-
tivity in the interprandial period after feeding with
butyrate. The low frequency of hypoglycemic events fol-
lowing a long-term high-fiber diet (50 g/day) [41] may
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also be linked to the higher hepatic glycogen content
induced by the time cumulative effect of butyrate.

More anecdotaly, butyrate effect should in part contribute
to the effect of acarbose used in the pharmacological pre-
vention of diabetes. Indeed, in rats fed with "Westernized"
diets, acarbose treatment suppressed starch digestion in
the small bowel but there was compensatory salvage by
bacterial fermentation in the large bowel. Cecal total
SCFA pool size was increased more than 4-fold, with even
bigger increases for butyrate. These changes in butyrate
were reflected in increased molar proportions of butyrate
in blood from both the portal vein and heart [42]. Acar-
bose could effectively increased colonic butyrate produc-
tion by several mechanisms such as reduced starch
absorption and larger concentrations of starch-fermenting
and butyrate-producing bacteria [43].

Conclusion

It must be kept in mind that under our experimental con-
ditions (acute butyrate supply and gastric absorption), the
observed effects could not be strictly transposed to fiber
diets. Whatever the case, the hepatic sparing effect of
butyrate on both glucose oxidation and glycogen store,
could be one of the molecular basis for the effects of die-
tary fibers on the prevention of insulin resistance. In the
muscle, the prevention of insulin resistance in rats supple-
mented in fiber has been explained by the effect of
butyrate increasing GLUT-4 via PPARy [44]. To our knowl-
edge, our work is the first to propose a biochemical mech-
anism in the liver to better understand how one of the
main end-products of dietary fibers may regulate glucose
metabolism. Since these data were obtained after acute
intake of butyrate, the chronic effects remain to be stud-
ied. The use of dietary fibers could be a simple, non-inva-
sive and socially acceptable method to improve the
metabolic pathways involved in metabolic syndrome
[45].

Methods
Chemicals
High-grade chemicals were purchased from Sigma Chem-
ical (St. Louis, Missouri, USA) except where otherwise
specified.

Animals

Male Wistar rats (Centre d'élevage Depré, St Doulchard,
France) weighing 90-120 g were fed ad libitum with a bal-
anced diet: carbohydrates (65%), proteins (16%), water
(12%), minerals (5%), fibers (4%) and lipids (3%)
amounting to 12.75 MJ/kg food. They were fasted for 48
hr, with free access to water, in order to deplete totally
their hepatic glycogen store. A fasting period of 48 hr was
currenly used in various protocols concerning liver meta-
bolic studies in rats [46-48]. They were then force-fed with

http://www.biomedcentral.com/1472-6793/8/19

an intragastric bolus of one of the following mixtures: (i)
diet A was 14.0 mg glucose/g body weight, (ii) diet B was
18.2 mg glucose/g body weight, or (iii) diet C was (14.0
mg glucose + 1.90 mg butyrate)/g body weight calculated
to be isocaloric compared to diet B (7.28 cal whereas diet
A was 5.60 cal) and isoglucidic compared to diet A. A sig-
nificant difference (23%) was thus obtained in the glu-
cidic energy supply. All mixtures were diluted with water
for a total force-feeding volume of 1.8 ml/100 g body
weight, respecting the maximal recommendations of 20
ml/kg of body weight. Intragastric administration with a
cannula (Harvard apparatus; 16 gauge diameter; 4 inches
long) was performed within 1 minute.

To determine the kinetic of in vivo hepatic ATP and glyco-
gen contents, ex vivo NMR measurements were performed
on isolated and perfused liver. For this purpose, animals
were anesthetized at different times from the force-feed-
ing time (t = 0) to 10 hours post force-feeding and the
liver was perfused and then excised for immediate NMR
measurements. n varied from 6 to 12 for each delay.
Venous blood was collected, immediately centrifuged (20
minutes at 3500 g) and stored at -80°C in order to meas-
ure serum glucose and insulin. Immediately after the per-
fusion of the portal vein, the anesthethized rats were
euthanasied by instant decapitation with scientific guillo-
tine.

The laboratory is licensed for animal experiments (French
Agriculture Department). The study complied with 1999
UFAW guidelines [Handbook on the Care and Manage-
ment of Laboratory Animals Vol 1, 7th edn Terrestrial Ver-
tebrates. Oxford (Poole T, English P)]. The protocol for
these experiments was approved by the Regional Ethics
Committee for Animal Experiment of Aquitaine-Poitou-
Charentes.

Liver perfusion

Media were diluted daily from concentrated stock solu-
tions. Standard Krebs-Heinseleit (KHB) buffer was com-
posed of (in mmol/L) 120 NaCl, 4.70 KCl, 1.20 MgSO,,
25 NaHCO,, 1.20 KH,PO,-K,HPO,, 1.30 CaCl,, 0.30 Na-
pyruvate and 2.10 Na-lactate (pH = 7.35 at 37°C). Rats
were anesthetized 1 hr, 2 hrs, 3 hrs, 4 hrs, 6 hrs, 8 hrs and
10 hrs after force-feeding by intraperitoneal injection of
pentobarbital sodium (50 mg/kg of rat). The technique of
liver antegrade perfusion through the portal vein, to
mimic physiological conditions, was described previously
[15-17,19]. Briefly, the liver (4-6 g) was perfused in nor-
mothermal and well-oxygenated conditions with KHB
containing glucose (30 mmol/L) and insulin (120 mUI/L)
(concentrations chosen to mimic the physiological post-
prandial state in the portal trunk) [49,50] at 37°C regu-
lated by a thermostatic bath. The perfusate was pumped
through a Silastic® home-made oxygenator, gassed with
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95% O, and 5% CO, (1 bar pressure). Perfusion flow was
kept constant (5 ml/min.g liver wet weight) and was suf-
ficient to ensure good oxygenation of the liver. Perfusate
temperature and pH were monitored both before entering
and after leaving the liver by continuous-flow pH elec-
trodes and temperature electrodes. The perfused liver was
then excised from the rat abdomen and transferred to a 20
mm-diameter NMR cell for direct glycogen and ATP ex vivo
measurement. Liver was then freeze-clamped for subse-
quent ethanol extraction for in vitro enzymatic determina-
tion of glycogen content and/or NMR determination.

NMR methodology

The spectra were obtained using a 31P/13C double-tuned
20 mm probe operating at 9.4T. Liver ATP content was
monitored by 3'P NMR and carbohydrate content in nat-
ural abundance was assessed by 13C NMR. 31P and 13C
NMR spectra were recorded at 161.9 and 100.6 MHz
respectively on a DPX400 spectrometer (Brucker). The
magnetic field was adjusted on the water proton signal.
31P NMR spectra were first obtained (100 free induction
decays (FID); 1 min acquisition time) without proton
decoupling. Radiofrequency pulses (70° flip angle) and
10,000 Hz spectral width were used for data acquisition.
13C NMR spectra were proton-decoupled using a gated bi-
level mode. 13C NMR spectra were obtained (200 FID; 3
min acquisition time) from a 66° radiofrequency pulse
repeated every second (25,000 Hz spectral width). Spec-
trometers with high magnetic field (9.4 T) allow the
obtention of high resolutive and informative metabolites
spectra. However, owing to the limited diameter of the
probe (25 mm) of the spectrometer, the in vivo experi-
ments on whole rat were excluded, hence accurate meas-
urements were performed on the isolated and perfused
liver.

Lorentzian line broadening of 15 Hz was applied before
Fourier transformation for both 31P and 13C NMR spectra.
Chemical shift of phosphorylated metabolites was
expressed relative to the position of resonance in the fre-
quency scale of an internal reference set (glycerophospho-
ryl-choline) at 0.47 ppm.13C chemical shifts were
expressed from an external silicone reference (1.45 ppm)
(the absolute quantity of hepatic glycogen concentration
was calculated by comparing the peak integral with that of
oyster glycogen standard [0 to 185 mM glycosyl units]
obtained under identical conditions). During the first
minutes of perfusion (total perfusion duration: 20 min-
utes), we discarded any liver showing an increase in the
intensity of inorganic phosphate resonance occurring
with a concomitant decrease in B NTP signals (corre-
sponding to more than 80% of the total liver ATP), prob-
ably reflecting some partial lobe ischemia. 13C NMR
analysis was performed only on liver showing a stable
high B NTP level.

http://www.biomedcentral.com/1472-6793/8/19

Perchloric extraction

The freeze-clamped liver was quickly weighed and ground
into liquid nitrogen. It was homogenized with 10 vol-
umes of HCLO, at 0°C and centrifuged (1000 g, 5 min,
4°C). The supernatant was neutralized with KOH in order
to precipitate KCLO, and was then centrifuged (1000 g, 5
min, 4°C). The supernatant was divided for (i) 13C NMR
analysis of glycogen and (ii) for enzymatic analysis (glu-
cose oxidase) performed after ethanol extraction. Finally,
for each liver, the comparison between the glycogen con-
tent measured by (i) ex vivo NMR method on the perfused
organ and (ii) the biochemical assay on its perchloric
extract, evidenced a linear relationship (Fig 2).

Glucose and insulin level determination

Blood (1 ml) was collected in the inferior vena cava just
before liver perfusion. The blood was immediately centri-
fuged (20 min, 3500 g). Glycemia (expressed as mmol/L)
was measured by hexokinase at 340 nm (multiparametric
analyzer Olympus AU640, Tokyo, Japan) and insulinemia
(expressed as pUI/L) by radioimmuno assay (Sanofi Diag-
nostic Pasteur, Marne la Coquette, France). The 10 x (gly-
cemia/insulinemia) ratio was calculated to estimate
insulin sensitivity [51]. The results were expressed in arbi-
trary units (AU) = 10 x (mmol/pUI).

Results expression and Statistics

All results were expressed as means + SEM. Different
phases of glycogen resynthesis were represented by the
AUCs. Statistical analysis was performed using one-way
analysis of variance (ANOVA) for all data analysis. A t-test
was performed following the ANOVA (P value lower than
0.05 was considered to be significant).

Abbreviations

ATP: adenosine triphosphate; AU: arbitrary units; FFA:
free fatty acids; KHB: Krebs Henseleit buffer; NMR:
nuclear magnetic resonance; SCFA: short-chain free fatty
acids; ppm: parts per million; ww: wet weight.
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