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Abstract

Background: Previous studies show that androgens are involved in hypertrophy and excitability of cardiomyocytes
and that their effects are mediated through their receptor. The aim of this study was to evaluate the presence of
androgen receptor (AR) in mouse heart during prenatal and early postnatal stages.

Results: The expression of AR and related genes, alpha myosin heavy chain -Myh6é-, beta myosin heavy chain -Myh7-
and atrial natriuretic factor -Nppa- was simultaneously evaluated by semiquantitative RT-PCR. AR was also detected by
immunohistochemistry. Androgen receptor mRNA was detected in hearts from 10.5 days post coitum to 16 postnatal
days. A higher expression of AR mRNA in atria compared to ventricles was observed in neonatal mouse. A
positive correlation between mRNA levels of AR and Nppa was observed in mouse heart at early postnatal
development. Androgen receptor expression is similar in males and females during cardiac development.

Finally, androgen receptor protein was observed by immunohistochemistry in myocardial cells of atria and
ventricles from 12.5 days onwards and restricted after 16.5 days post-coitum to nuclei of cardiomyocytes.

Conclusion: Present results provide evidence that androgen receptor is expressed from prenatal stages in
mouse heart, supporting the proposition that androgens could be involved in mammalian heart development.
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Background

The involvement of androgens in gender-related cardio-
vascular diseases [1] explains the interest for the study of
the role of sexual steroids on cardiac myocytes. There are
sex-related differences in mRNA expression of alpha- and
beta-myosin heavy chains (MHC) and other functional
proteins in rat myocardium [2]. The MHC composition
changes in ventricular myocytes of castrated rats and it is
restored by testosterone treatment [3]. Moreover, andro-
gens influence the expression of genes regulating intracel-
lular calcium and contractile performance of ventricular
myocytes in postnatal rats [4]. A sex-related difference in
the cardiac response to atrial natriuretic peptide has been
described in spontaneously hypertensive rats. On the
other hand, atrial natriuretic peptide is differentially
expressed between atria and ventricles in the human heart
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and has been related to cardiac hypertrophy and remode-
ling [5-7].

The presence of androgen receptor in embryonic
heart would be important to indicate a role of andro-
gens in prenatal cardiac development. The aim of this
work was to determine the expression of androgen
receptor simultaneously with the expression of alpha
and beta myosin heavy chain genes (Myh6 and Myh?7)
and atrial natriuretic peptide gene (Nppa) at prenatal
and early postnatal stages of mouse heart develop-
ment. The presence of mRNA and the protein of the
androgen receptor was observed in the nuclei of
cardiac myocytes from embryonic stages and a posi-
tive correlation between AR and Nppa mRNA’s was
registered at 2 and 9 postnatal days.

Methods

Animals

CD1 mice were caged with food and water ad libitum
under a 12-h light/12-h dark cycle in a room with a
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constant temperature of 23 + 2 °C. Female mice were
mated with males overnight, when vaginal plug was
found, it was determined as 0.5 days post coitum (dpc).
Pregnant females from 8.5, 10.5, 12.5, 14.5, 16.5 and 18.5
dpc were euthanized by cervical dislocation to obtain
the embryos. The developmental stage was corroborated
according to characteristics described at emouseatlas.org.
Mouse pups from 2, 9 and 16 postnatal days (pnd) were
euthanized by decapitation. The sex of embryos and
pups was determined after 12.5 dpc by gonad examin-
ation. All the procedures were approved by the Ethics
and Research Committee of the Facultad de Medicina,
Universidad Nacional Auténoma de México (UNAM)
and according to the National Institutes Health
guidelines.

Total RNA purification and RT-PCR analysis

Atria and ventricles were obtained at pre-and postnatal
stages and directly stored in RNA later solution (Qiagen,
Valencia, CA). Samples of males and females were pooled
separately to obtain enough tissue; at least three hearts
were included in each pool. Total RNA was isolated using
Trizol (Life Technologies, Gaithersburg, MD) according
to manufacturer’s instructions. Total RNA was measured
using NanoDrop (Thermo Scientific, Barrington, IL).
Total RNA (1.0 pg) was reversely transcribed to cDNA by
Transcriptor Reverse Transcriptase (Roche) in 20 pL reac-
tion mixture. For semi-quantitative PCR analysis 1 pL of
c¢DNA as template was amplified with Platinum Taq DNA
polymerase (Invitrogen, Carlsbad, CA) in 20 pL PCR reac-
tions. The number of cycles was selected to be in the lin-
ear portion of the exponential curve. The sequences of
primers used were: for mouse beta-actin (NM_007393)
sense primer sequence: 5’-gtatgcctctggtcgtacca-3” and anti-
sense primer sequence: 5’-ttgctgacaggatgcagaag-3'; mouse
glyceraldehyde-3-phosphate dehydrogenase (NM_008084)
sense primer sequence: 5'-atggtgaaggtcggtgtgaa -3’ and
antisense primer sequence: 5’-gattgtcagcaatgcatcctge-3';
mouse androgen receptor (NM_013476) sense primer se-
quence: 5'-gagtgactactctgcctccgaag-3” and antisense primer
sequence: 5’-gttatgaagcagggatgactctggg-3’; mouse myosin,
heavy polypeptide 6, cardiac muscle, alpha (NM_0011
64171)sense primer sequence: 5’ -atctctgacaacgcctatc-3’
and antisense primer sequence: 5'-gataggcgttgtcagagat-3’;
mouse myosin, heavy polypeptide 7, cardiac muscle, beta
(NM_080728) sense primer sequence: 5'-tgtgctgtacaacct-
caagg-3’ and antisense primer sequence: 5'-ccttgaggttgta-
cagcaca-3'; mouse natriuretic peptide type A (NM_008725)
sense primer sequence: 5’-aataaacttcagcaccaaggac-3' and
antisense primer sequence: 5'-gtccttggtgetgaagtttatt-3°. The
PCR products were size-fractionated by 1% agarose gel
electrophoresis and visualized with ethidium bromide using
an EpiChemi II Darkroom (UVP Inc., Upland, CA). PCR
bands were subjected to densitometry analysis with
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Quantity One software (Bio-Rad). Measurements were
done by triplicates and the average was registered as the
value of the sample. Data were normalized to beta-actin
values, which were obtained simultaneously in each sample,
before statistical analysis. The sequence determination was
carried out using the Automated DNA sequencer model
373 (PE- Applied Biosystems Foster CA).

Immunohistochemistry

Complete embryos before 14.5 dpc and hearts from
older time points were fixed by immersion overnight in
saline phosphate buffer containing 4% paraformaldehyde
and paraffin embedded. Tissue sections 3 pm thick, were
deparaffinized and rehydrated. Antigen retrieval was
carried out in a pressure chamber for 5 min in Diva
decloaker citrate buffer (Biocare, Pike Lane Concord,
CA). Non-specific binding sites were blocked with 10%
goat serum for 1 h at room temperature. Tissue slices
were incubated overnight at 4 °C with anti-AR poly-
clonal antibody diluted 1:50 (Santa Cruz Biotechnology,
Santa Cruz, CA). AR antibody evaluated by Western blot
technique binds to a 110 kDa protein, the expected size
of androgen receptor. Slides were further incubated with
Mach2 rabbit HRP polymer (Biocare) for 1 h at room
temperature. Signal detection was achieved with diami-
nobencidin chromogen kit (Biocare). Color development
was stopped by PBS rinsing and counterstained with
Gill's hematoxylin. Samples without first AR antibody
were used as negative controls. Histological sections of
testis were used as positive controls.

Statistical analysis

Data were analyzed by ANOVA and post-hoc Tukey test,
Student’s ¢ test and Pearson correlation coefficient as in-
dicated in figures. Results were considered significant
when P values were less than 0.05.

Results

Androgen receptor mRNA was evaluated by semi quan-
titative PCR in the heart of mouse embryo; the presence
of AR mRNA was observed from 10.5 dpc until birth.
The AR expression increases gradually with the highest
levels registered at 16.5-18.5 dpc (Fig. 1).

Temporal changes in the expression of AR mRNA
were simultaneously evaluated with Myh6, Myh7 and
Nppa in atria and ventricles of prenatal and postnatal
hearts. The presence of AR mRNA was similar in atria
and ventricles at 14.5, 16.5, 18.5 dpc in prenatal heart
development. In postnatal hearts at 2, 9 and 16 pnd, a
higher expression of AR mRNA in atria was observed
compared with that of the age-matched ventricles (Fig.
2a). Similarly, Nppa expression was significantly higher
in atria compared to that of ventricles from 18.5 dpc to
16 pnd (Fig. 2b). The expression of Myh6 was
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Fig. 1 Androgen receptor mRNA levels in prenatal heart
development. Bars represent AR mRNA expressed in arbitrary density
units, mean + SD (n = 4-6); a different superscript indicates
statistical significance after ANOVA and post-hoc Tukey test

significantly higher in atria than in ventricles at 14.5—
18.5 dpc prenatal stages (Fig. 2c). On the other hand,
Myh?7 is highly expressed in ventricles from prenatal
and postnatal developmental stages. A similar expres-
sion of Myh7 between chambers was registered at 16
pnd (Fig. 2d).

Androgen receptor mRNA displayed a significant
correlation with the expression of Nppa at 2 and 9 dpn
heart development (Fig. 3a) but not with Myh6 or Myh7
(Fig. 3b, c¢). Correlation of AR with Nppa was also ob-

served at each age, separately; at 2 pnd “r” value was
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0.78 (n = 24); at 9 pnd r = 0.75 (n = 20). Moreover, AR
correlates with Nppa in atria (r = 0.67, n = 22) and
ventricles (r = 0.71, n = 22) indicating that correlation is
observed in both chambers despite the highest level of
Nppa observed in atria. There was no correlation of AR
with Nppa, Myh6 or Myh7 in prenatal stages.

Androgen receptor mRNA was similarly expressed in
male and female hearts, independently of the age and
the chamber studied. Androgen receptor mRNA values
determined in atria and ventricles at 14.5 dpc, and 16
pnd separated by gender is shown in Fig. 4.

Immunoreactivity for androgen receptor was evalu-
ated in heart samples obtained at 12.5, 14.5, 16.5,
18.5 dpc, and 2, 9 and 16 pnd. The presence of the
androgen receptor was detected in the cell nuclei of
myocytes and endocardial cells at 12.5 dpc (Fig. 5a).
At more advanced stages, 16.5 dpc onwards not all
myocardial cells were positive for AR, images of posi-
tive and negative nuclei began to be identified. In
postnatal hearts, we can distinguish cardiac myocytes
from fibroblast by morphology; the presence of AR
was limited to the nuclei of cardiac myocytes and
fibroblast nuclei were negative (Fig. 5b). Fibroblasts
localized at cardiac valves and fibrous skeleton of
heart were AR negative (not shown). The expression
of AR was similar in samples obtained at 2, 9 and 16
pnd. No differences were detected by immunohisto-
chemistry between atria and ventricles.
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Discussion

Androgen receptor expression is herein described
through prenatal and early postnatal heart develop-
ment. We demonstrated that AR mRNA is present
during the major stages of heart morphogenesis:

stages, from 10.5 dpc after cardiac cell lineage establish-
ment [12], suggesting the participation of androgen
receptor in terminal differentiation of cardiac myocytes.
Moreover, present results show that AR displays a
higher expression in atria than in ventricles at 2, 9 and
16 days after birth. In neonatal mouse, cardiac myocytes
perform terminal differentiation and display ion channel
expression profiles distinct from that of the adult mouse
[13]. AR knock-out mouse shows altered atrium electro-
physiology due to calcium protein dysregulation [14]
Similarly, in adult rat atria, calcium-handling proteins
from sarco-endoplasmic reticulum were altered after or-
chiectomy and prevented by testosterone replacement
[15]. These results suggest that androgens can regulate
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Fig. 5 Androgen receptor detection by immunohistochemistry in prenatal and postnatal heart development. Representative images of a 12.5
dpc, and b 9 pnd stage. The AR immunolabeling is present in cardiac myocyte nuclei (arrow heads) but surrounding cells are negative. ¢

ion channel expression during atrium postnatal develop-
ment, but this proposal merits further studies.

During heart development, there is a dynamic expres-
sion of several genes, included the alpha myosin heavy
chain, Myh6, beta myosin heavy chain, Myh7, and atrial
natriuretic factor A, Nppa [16, 17]. This study confirms
that Myh6 transcript is preferentially expressed in atria
before birth; afterwards, the mRNA levels in atria and
ventricle became similar. Expression of Myh7 predomi-
nates in ventricle at the evaluated developmental stages.
Moreover, the ratio of Myh6/Myh7 is similar to that of
previous reports [16]. Additionally, we have observed
that mRNA of Nppa predominates in atria at 2, 9 and 16
pnd. AR shows a significant correlation with mRNA
Nppa expression in atria and ventricles at perinatal
stages; these results are not observed for Myh6 or Myh?7.
These findings could be explained because both AR and
Nppa have a hypothetical upstream common regulator
gene. Alternatively, it suggests a direct relationship be-
tween AR and Nppa expression. It has been reported
that dihydrotestosterone increases ANP production in
rat neonatal cardiac myocytes and AR antagonist treat-
ment with cyproterone abolishes the effect of dihydro-
testosterone on ANP secretion [11]. Further studies will
be required to corroborate an androgenic regulation of
Nppa expression in cardiac development.

No variations in the expression of AR between males
and females are herein detected, either at prenatal or
postnatal stages. Similarly, it has been reported that AR
did not differ between male and female in the cytosolic
and nuclear fractions of adult mouse ventricles and atria
[18]. There are differences between genders in the adult
normal heart physiology, and androgens induce changes
in the heart of adult male mammals, including cardiac
mass and mitochondrial function [19-22].

The immunoreactivity for AR protein is displayed in
nuclei of atrial and ventricular myocardium from 12.5
dpc to 16 pnd. The presence in the nuclei of the heart
cells suggests that AR is an active transcription factor.
Myocardial and endocardial cells are positive for AR at
12.5 dpc. Meanwhile, at postnatal stages, it is clearly

identified that cardiac myocytes are positive while cardiac
fibroblasts are negative. Previous studies have described
the presence of androgen receptors in nuclear subcellular
fraction of mouse cardiac myocytes [18]. Cardiac fibro-
blasts appear around embryonic day 12.5 and increase in
number steadily through postnatal day one [23, 24].
Herein, a negative immunoreactivity for AR seems to be
displayed in fibroblasts of endomysium.

Conclusion

The androgen receptor is expressed during the morpho-
genesis and maturation of mouse heart, primarily
restricted to cardiac myocytes. A high expression of AR
in atrial tissue is observed at early postnatal heart devel-
opment, together with a positive correlation between AR
and Nppa expression in atria and ventricles. Present data
support that androgen receptor action would be relevant
in mammalian heart development.
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