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Abstract

Background: A population of satellite cells exists in skeletal muscle. These cells are thought to be primarily
responsible for postnatal muscle growth and injury-induced muscle regeneration. The Janus kinase/signal
transducers and activators of transcription (JAK/STAT) signaling cascade has a crucial role in regulating myogenesis.
In rodent skeletal muscle, STAT3 is essential for satellite cell migration and myogenic differentiation, regulating the
expression of myogenic factors. The aim of the present study was to investigate and compare the expression
profile of JAK/STAT family members, using cultured primary human skeletal muscle cells.

Results: Near confluent proliferating myoblasts were induced to differentiate for 1, 5 or 10 days. During these
developmental stages, members of the JAK/STAT family were examined, along with factors known to regulate
myogenesis. We demonstrate the phosphorylation of JAKT and STAT1 only during myoblast proliferation, while
JAK2 and STAT3 phosphorylation increases during differentiation. These increases were correlated with the
upregulation of genes associated with muscle maturation and hypertrophy.

Conclusions: Taken together, these results provide insight into JAK/STAT signaling in human skeletal muscle
development, and confirm recent observations in rodents.

Background

Muscle fibres are terminally differentiated; therefore a
population of quiescent satellite cells exists. These cells
are thought to be responsible for postnatal muscle
growth and injury-induced muscle regeneration [1].
Satellite cells are undifferentiated mononuclear cells,
located within the basal lamina of the muscle fibre and
reside in a dormant state until they are activated by
physical activity or injury [2,3]. Upon activation they re-
enter the cell cycle. Proliferating myoblasts expand their
cytoplasmic-nuclei ratio and begin to fuse to existing
fibres or with themselves to initiate de novo myofibre
synthesis [3]. Muscle development is critically dependent
on a family of myogenic regulatory factors (MRFs)
including MyoD, Myf5, Myf6 and myogenin. They are
temporally expressed to regulate the proliferation and
differentiation of myoblasts, and often display overlap-
ping roles. MyoD and Myf5 are expressed in actively
proliferating cells prior to differentiation, while the
expression of myogenin and Myf6 indicates that
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myoblasts have irreversibly withdrawn from the cell
cycle and have commenced differentiation [4-7].
Numerous intracellular signaling pathways and mole-
cules have been found to play several roles in myogenic
differentiation. These include MAPK and ERK, which
elicit different signals to promote or inhibit differentia-
tion and fusion [8-13]. In addition, PI3K/Akt is utilized
by IGF to stimulate differentiation while other growth
factors such as HGF and FGF-2 enhance proliferation
[8,14,15]. The JAK/STAT signaling cascade also appears
to be an integral factor for myoblast development,
known to be activated by IL-6 and LIF [16-21]. JAK
family members, JAK1 and JAK2, are the most com-
monly used non-receptor tyrosine kinases. Seven STAT
members exist, STAT1-4, STAT5a, 5b and 6, yet
STAT3 was the first to be implicated in proliferation
in vitro [14,19] and in vivo [21]. Recently in rodent
models, specific roles have been defined for several JAK
and STAT members. It was demonstrated that JAK1/
STAT1/STATS3 signaling is involved in myoblast prolif-
eration preventing premature differentiation [16]. How-
ever, JAK2/STAT2/STAT3 appears to positively regulate
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differentiation indicating that STAT3 elicits specific
responses at various times during myogenesis [22].

The temporal responsiveness of JAK/STAT signaling
in humans is largely unknown. Therefore, the aim of
this study was to investigate the expression of JAK/
STAT signaling molecules in vitro during human myo-
blast differentiation. Near confluent proliferating myo-
blasts were induced to differentiate for 1, 5 or 10 days.
During these developmental stages, members of the
JAK/STAT family were examined, along with factors
known to regulate myogenesis. It was hypothesized that
STATS3 signaling would be elevated during myogenesis
as it is essential for both proliferation and differentiation
in murine cells, and we expected STAT1 phosphoryla-
tion to be restricted to proliferation.

Results

Myoblasts undergoing differentiation display a typical
genetic profile

Phenotypically, the cells used in these experiments were
successfully undergoing differentiation (Figure 1). Prolif-
erating cells demonstrated a high nuclei-cytoplasmic
ratio (Figure 1a). Serum depletion initiated differentia-
tion, where myoblasts became elongated (Figure 1b) and
fused with nearby cells to form multinucleated tubes
(Figure 1c). Following 10 days of serum depletion, large
myotubes were evident with a low number of single
nuclei myoblasts remaining (Figure 1d).

To confirm these observations, the mRNA expression
of genes known to be involved in myogenesis were
investigated; cyclinD1 (a), MyoD (b), myogenin (c), a-
actin (d), eMHC (e) and SOCS3 (f) (Figure 2). cyclinD1
was significantly decreased following the initiation of

Figure 1 Phase contrast images of developing human skeletal
muscle cells. Primary myoblasts were grown to near confluence (a)
and induced to differentiate for 1 (b), 5 (c) and 10 (d) days. Scale
bar represents 50 um.
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differentiation (p < 0.05). MyoD expression increased
1.5-fold at the onset of differentiation (Day 1) (p <
0.01). By Day 5 and 10, MyoD was below the level
observed in proliferating cells (p < 0.001). Myogenin
expression was 870- and 585-fold higher (Day 5 and 10
respectively) than that seen in proliferating cells (p <
0.001, p < 0.01 respectively). a-actin and eMHC were
measured as markers of myotube growth. -actin and
eMHC were significantly higher in differentiating myo-
blasts compared to both proliferating and Day 1 cells (p
< 0.001). Finally, SOCS3 mRNA expression displayed a
significant decrease at the onset of differentiation (p <
0.05), however this was again elevated by Day 5 of dif-
ferentiation (p < 0.001), thereafter it returned to the
level observed during proliferation.

Elements of STAT signaling are differentially expressed
during myogenesis

To investigate STAT signaling during human myoblast
differentiation, we measured the phosphorylation of
STAT family members STAT1 and STAT3 as well as
the negative regulator, SOCS3. Tyr705 phosphorylation
increased during myoblast differentiation (p < 0.05;
proliferating cells compared to day 5 and day 10),
which was accompanied by a concomitant increase in
total STAT3 (p < 0.05; proliferating cells compared to
day 5 and day 10). Similarly there was an increase in
total STAT1 during differentiation (p < 0.01); however
phosphorylation of Tyr701 was only evident in prolif-
erating myoblasts (Figure 3 and 4). Interestingly, unlike
SOCS3 mRNA, SOCS3 protein levels remained
unchanged during myoblast development (Figure 3).
Phosphorylation of upstream kinases, JAK1 and JAK2
was measured; JAK1 phosphorylation at Tyr1022/1023
was only evident in proliferating cells while Tyr1007/
1008 phosphorylation of JAK2 appeared to increase
during differentiation. To confirm the commitment of
myoblasts to differentiation, myogenin protein expres-
sion was also measured; this was only evident in Day 5
and Day 10 cells. Actin was used as a loading control
(Figure 3).

Discussion

Due to the complexity of intracellular signaling, the
molecular mechanisms underlying skeletal muscle devel-
opment remain partially understood. It is widely
accepted that myogenesis is critically dependent on
MRFs, however numerous other signaling pathways
have been found to be influential on myogenic differen-
tiation. Therefore, it is important to investigate the sig-
naling pathways that may be involved in the structural
remodeling of skeletal muscle. JAK/STAT is now recog-
nized as a critical pathway needed for efficient muscle
fibre adaptation. In murine cell models, it was identified
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Figure 2 Genes associated with myogenesis are differentially regulated during myoblast differentiation. The expression of cyclinDT (a),
MyoD (b), myogenin (c), e-actin (d), eMHC (e) and SOCS3 (f) mRNA was measured in primary human myoblasts. Values are arbitrary units
normalized to the expression levels of the reference gene 18 S representing the mean of 6 replicates + SEM. Significantly different from Pro: * p
< 005, ** p < 001, *** p < 0.001. Significantly different from Day 1: 88 p < 0.001. Significantly different from Pro and Day 1: Ak p < 0.01, AAA p
< 0.001. Significantly different from Day 5 and Day 10: yyy p < 0.001.

that the JAK1/STAT1/STAT3 axis is involved in myo-
blast proliferation preventing the premature differentia-
tion into myotubes [16]. However, it is JAK2/STAT2/
STATS3 that appears to positively regulate differentia-
tion, indicating that STATS3 elicits specific responses at
various times during myogenesis [22], possibly via JAK/
STAT co-operating with various ligands to initiate dis-
tinct cellular responses.

Primary human muscle cells provide an appropriate
experimental model that has human physiologic rele-
vance. Therefore, using primary human skeletal myo-
blasts, we sought to corroborate the results obtained in
murine cells [16,17,22]. Near confluent myoblasts were
exposed to low serum media to induce differentiation

for 1, 5 or 10 days. The expression profile of JAK/STAT
family members was investigated in conjunction with
factors known to regulate myogenesis. As the myoblasts
were undergoing differentiation, they displayed a typical
genetic expression profile. MRFs are temporally
expressed to regulate the proliferation and differentiation
of myoblasts. MyoD is expressed in actively proliferating
cells prior to differentiation, followed by increased myo-
genin expression at the beginning of differentiation [4-6].
At the onset of differentiation there is also a withdrawal
from the cell cycle, represented by changes in expression
of cell cycle regulators. As myofibres mature, they begin
to fuse to form multinucleated muscle cells which is
accompanied by the expression of MHC and a-actin
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Figure 3 Temporal expression of JAK/STAT during myogenic
differentiation in human muscle cells. Representative Western
blots of protein extracted from near confluent primary human
myoblasts that were induced to differentiate during the specified
times. Phosphorylation of JAK2 (Tyr1007/1008) and STAT3 (Tyr705)
increases during differentiation, while JAKT (Tyr1022/1023) and
STAT1 (Tyr701) were only apparent during proliferation.

[7,23]. In primary human skeletal myoblasts, STAT3
Tyr705 phosphorylation increased during myoblast dif-
ferentiation, which was accompanied by an apparent ele-
vation in endogenous STAT3, indicating a role during
both the proliferative and differentiation phases. STAT3
elevations were associated with unchanged SOCS3 pro-
tein expression during the time course. However, SOCS3
mRNA expression was significantly lower at Day 1 of dif-
ferentiation compared to proliferating and Day 5 differ-
entiated muscle cells, consistent with earlier studies [24];
further highlighting the importance of STAT3 signaling
during the onset of differentiation.

Unlike STAT3, STAT1 Tyr701 phosphorylation was
only evident during proliferation despite endogenous
STAT1 protein increasing during differentiation. In
murine cells, it has been demonstrated that STAT1 is
important for proliferation, therefore it was expected
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that we would observe STAT1 activity only during this
stage. However, it has been described that STAT1 acti-
vation can often reduce proliferation [25]. Accordingly,
it may be reasonable to assume that STAT1 phosphory-
lation during proliferation occurs when it complexes
with STAT3 to prevent myoblast differentiation [16]; yet
when cells undergo differentiation, STAT1 may be act-
ing alone to inhibit myoblast proliferation [25].

Upstream of STATS are gp130, and non-receptor tyr-
osine kinases, JAK1 and JAK2. Previously it has been
demonstrated that JAKI and JAK2 have differential
roles during murine myoblast differentiation despite
their high homology; JAK1 is essential for proliferation,
while JAK2 is necessary for differentiation [16,22].
In this study, JAK1 phosphorylation was only present in
proliferating myoblasts; this is consistent with its role in
proliferation as described in rodent models [16]. JAK2
was phosphorylated during each time point, which was
unexpected given its reported role in differentiation
[22]. However, this may indicate that there was a popu-
lation of myoblasts that were spontaneously differentiat-
ing, in the proliferating sample. This may also account
for the higher than expected expression of MyoD
observed in the proliferating cells.

Conclusions

The current study demonstrates that STAT signaling
during myogenesis is similar in humans as to what has
been described in rodents. Importantly, as STAT3 plays
an integral role in myoblast maturation and skeletal
muscle adaptation, we observed an increase in STAT3
Tyr705 phosphorylation during differentiation which
was accompanied by an apparent elevation in endogen-
ous STAT3. Although our results are similar to that
demonstrated in rodents, our observations alone should
not be used to definitively identify the role of JAK/
STAT signaling in human skeletal myogenesis; further
mechanistic investigation is warranted to clearly define
the importance of this pathway in human skeletal mus-
cle development, similar to that which has been per-
formed in murine models [16,17,20,22,24]. Additionally,
as this pathway is critical for myogenesis, it may be an
appropriate therapeutic target for diseases with impaired
muscular adaptation and regeneration.

Methods

Primary Skeletal Muscle Cell Culture

Primary skeletal muscle cell culture was established
according to previously described methods [26,27]. Ske-
letal muscle samples were excised using the percuta-
neous needle biopsy technique [28] modified to include
suction [29] from the vastus lateralis of healthy young
males, in accordance with the Deakin University Ethics
Committee, where written and verbal informed consent
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Figure 4 STAT3 and STAT1 are differentially expressed during myogenic differentiation in human muscle cells. Graphs represent
phosphorylated and endogenous levels of STAT3 (a, b) and STATT (c, d) in protein extracted from near confluent primary human myoblasts that
were induced to differentiate during the specified times. Values are arbitrary units representing the mean of 6 replicates + SEM. Significantly
different from Pro: * p < 0.05, *** p < 0.001. Significantly different from Pro and Day 1: A p < 0.05, AA p < 0.01.

was obtained. The excised muscle was immersed and
extensively washed in ice-cold Hams F-10 medium
(Invitrogen, Melbourne, Australia) before being minced
in ice-cold Hams F-10 medium (Invitrogen, Melbourne,
Australia). Minced tissue was then digested in 25 ml
0.05% Trypsin/EDTA (Invitrogen, Melbourne, Australia)
at 37°C with agitation for 20 min to release the myo-
blasts. The supernatant containing the myoblasts was
then collected and the process repeated a further two
times to breakdown any remaining tissue. Horse serum
(HS) (Invitrogen, Melbourne, Australia) was subse-
quently added to the supernatant to a final concentra-
tion of 10%. The supernatant was filtered through a
pre-wet 74 pum (15 mm diameter) filter (Sigma-Aldrich,
Sydney, Australia) to remove any connective tissue and
then centrifuged for 10 min at 1600 rpm to collect the
cells. The resulting cell pellet was re-suspended in
Hams F-10 medium containing 20% Fetal Bovine Serum
(FBS) (Invitrogen, Melbourne, Australia) with 25 ng/ml
bFGF (Invitrogen, Melbourne, Australia), 0.05% pen/
strep (Invitrogen, Melbourne, Australia) and 0.05%

amphoterecin (Invitrogen, Melbourne, Australia). The
cells were then seeded on to an uncoated 25 cm? flask
and incubated at 37°C for 30 min to induce fibroblast
attachment, leaving myoblasts suspended in the med-
ium. The medium was aspirated and this process was
repeated for another 30 min. The medium was aspirated
and seeded on to an extracellular matrix (ECM) (Sigma-
Aldrich, Sydney, Australia) coated 25 cm?® flask. The
resulting primary cell cultures were maintained in F10
Nutrient Mixture (Invitrogen, Melbourne, Australia)
containing 20% FBS with 25 ng/ml bFGF, 0.05% pen/
strep and 0.05% amphoterecin in humidified air at 37°C
and 5% CO,.

Cells were washed twice with PBS and detached from
the flask surface using TrypLE™ (Invitrogen, Mel-
bourne, Australia) and seeded onto ECM coated petri
dishes (protein) and 6 well plates (RNA). When cells
reached 70% confluence they were either left to prolifer-
ate in growth media, or induced to differentiate with
DMEM/F12 (Invitrogen, Melbourne, Australia) contain-
ing 2% HS, 0.05% pen/strep and 0.05% amphoterecin for
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Table 1 Details of primers used for real-time PCR analysis
Gene GenBank Accession Number Forward Primer Reverse Primer
(5-3) (5%-3)
185 NR_003286 TTCGGACGTCTGCCCTATCAA ATGGTAGGCACGGCGACTA
a-actin NM_001100 GTAGCTAACCGCCCAGAAACT AGGCCGGAGCCATTGTC
CyclinD1 NM_053056 GCATGTTCGTGGCCTCTAAGA CGGTGTAGATGCACAGCTTCTC
eMHC NM_002470 TCCTGGCTGTTGCTGTCTTCT ACTTCCATTTCAGTGTCACTACTCATG
MyoD NM_002478 CCGCCTGAGCAAAGTAAATGA GCAACCGCTGGTTTGGATT
Myogenin NM_002479 GGTGCCCAGCGAATG TGATGCTGTCCACGATCGA
SOCS3 NM_003955 GACCAGCGCCACTTCTTCA CTGGATGCGCAGGTTCTTG

Primer sequences were designed using Primer Express version 3.0 software (Applied Biosystems) using sequences accessed through GenBank and checked for
specificity using Nucleotide-Nucleotide Blast search. Embryonic myosin heavy chain, eMHC.

1, 5 or 10 days. Images were captured with an Olympus
IX51 (Olympus, Australia) using AnalySIS getIT soft-
ware (Olympus, Australia).

Protein Extraction and Western Blot Analysis

Cells were washed twice with PBS followed by the addi-
tion of RIPA lysis buffer (Millipore, Billerica, MA). The
lysate was rotated at 4°C for 1 h then centrifuged at
13000 rpm at 4°C for 10 min and the supernatant col-
lected for analysis of protein concentration (BCA pro-
tein assay kit, Pierce Biotechnology, Rockford, IL).
Protein samples (20 pg) were denatured in sample buffer
and separated by 8% SDS-PAGE. The proteins were
transferred onto a PVDF membrane and soaked in
methanol for 2 min then left to air dry for 20 min [30].
Primary antibodies, pSTAT3, tSTAT3, pSTATI,
tSTATI1, pJAKL and pJAK2 (Cell Signaling, Danvers,
MA) diluted in 5% BSA/TBST; SOCS3 (H103) (Santa
Cruz Biotechnology, Santa Cruz, CA) diluted in 5%
skim milk/PBST; myogenin (Santa Cruz Biotechnology,
Santa Cruz, CA) diluted in 5% skim milk/TBST and
actin (Sigma-Aldrich, Sydney, Australia) diluted in 4%
cold fish gelatin (CFG)/TBST were applied and incu-
bated overnight at 4°C. Membranes were subsequently
washed with TBST and incubated for 1 h at room tem-
perature with HRP-conjugated secondary antibodies
before being washed again. Proteins were visualized by
enhanced chemiluminescence (Western Lighting Chemi-
luminescence Reagent Plus, Perkin-Elmer, Boston, MA).
The density of the bands were quantified using Kodak
Imaging software, Kodak ID 3.5 (Perkin Elmer Life
Sciences, Boston, MA).

RNA Extraction and RT-PCR

Cells were washed twice with PBS followed by the addi-
tion of TRI-Reagent (Applied Biosystems, Foster City,
CA). Chloroform (Sigma-Aldrich, Sydney, Australia) was
added to separate the phases. Following centrifugation,
the aqueous layer was removed, an equal volume of iso-
propanol (Sigma-Aldrich, Sydney, Australia) was added
and the RNA precipitated at -20°C for 2 h. The RNA

was centrifuged at 13000 rpm to pellet the RNA. The
pellet was washed with 75% ethanol and then re-sus-
pended in nuclease free water. RNA quality and concen-
tration were determined using the NanoDrop 1000
Spectrophotometer (Thermo Scientific, Australia). First-
strand ¢cDNA was generated from 0.5 pg total RNA
using High Capacity RNA-to-cDNA kit (Applied Biosys-
tems, Foster City, CA). RT-PCR was performed using
the Applied Biosystems 7500 Real Time PCR System
(Applied Biosystems, Foster City, CA). PCR was per-
formed in duplicate with reaction volumes of 20 ul, con-
taining Power SYBR Green 1 (Applied Biosystems,
Foster City, CA), forward and reverse primers and
¢DNA template (diluted 1:20). Data were analyzed using
a comparative critical threshold (Ct) method where the
amount of target normalized to the amount of endogen-
ous control relative to control value is given by 244,
The efficacy of 18 S as an endogenous control was
examined using the equation 2°2“*, No change in the
expression of this gene was observed (data not shown)
so it was considered an appropriate endogenous control
for this study. Primers are outlined in Table 1.

Statistical Analysis

Statistical analysis was performed using SPSS 15.0.
Unless stated otherwise, means were compared using a
one-way ANOVA and significant differences were deter-
mined using a Bonferroni Post Hoc Test. Data is pre-
sented as mean + SEM. A probability level of <0.05 was
adopted throughout to determine statistical significance
unless otherwise stated.
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