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Abstract
Background: This study investigates bradykinin and nitric oxide as potential mediators of AT2-
receptor-stimulated duodenal mucosal alkaline secretion. Duodenal mucosal alkaline secretion was
measured in methohexital- and α-chloralose-anaesthetised rats by means of in situ pH-stat
titration. Immunohistochemistry and Western blot were used to identify the BK2 receptors.

Results: The AT2 receptor agonist CGP42112A (0.1 µg kg-1 min-1) administered intravenously
increased the duodenal mucosal alkaline secretion by ~50 %. This increase was sensitive to the
selective BK2 receptor blocker HOE140 (100 ng/kg iv), but not to luminal administration of the
NOS blocker L-NAME (0.3 mM). Mean arterial pressure did not differ between groups during the
procedures. Immunohistochemistry showed a distinct staining of the crypt epithelium and a
moderate staining of basal cytoplasm in villus enterocytes.

Conclusion: The results suggest that the AT2-receptor-stimulated alkaline secretion is mediated
via BK2 receptors located in the duodenal cryptal mucosal epithelium.

Background
Alkaline secretion by the duodenal mucosa is considered
to be of great physiological importance for the mucosal
defense against gastric acid. This secretion has been
shown to be regulated by hormones, neuronal and para-
crine mechanisms [1] We have previously demonstrated
that the renin-angiotensin system (RAS) and its key medi-
ator angiotensin II (Ang II) influence rat duodenal mucos-
al alkaline secretion in vivo. Two principle angiotensin II
receptor subtypes have been identified in the rat duodenal
mucosa; the angiotensin II subtype 1 receptor (AT1 recep-
tor) that mediates a secretory inhibition in concert with
the sympathoadrenergic system [2], and the angiotensin II
subtype 2 receptor (AT2 receptor) that stimulates the du-
odenal mucosal alkaline secretion [3]. The AT2 receptor is

involved in the regulation of fluid and electrolyte trans-
port in the jejunum via a nitric oxide- and cGMP-depend-
ent pathway [4,5]. A similar arrangement exists in the
kidney where involvement of bradykinin has been dem-
onstrated [6,7]. Interestingly, both bradykinin (via brady-
kinin receptor type 2 (BK2 receptor)) and mucosal NO
formation have been shown to regulate duodenal mucos-
al alkaline secretion [8,9]. The present study was under-
taken to elucidate the potential involvement of these
regulatory factors in AT2-receptor-stimulated duodenal
mucosal alkaline secretion. Based on pharmacological in-
terference it is here reported that bradykinin, but not epi-
thelial NO formation, is a mediator of AT2-induced
duodenal mucosal alkaline secretion. Therefore, an
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additional aim was to locate bradykinin receptors in the
duodenal wall.

Results
Alkaline secretion and mean arterial pressure
Duodenal mucosal alkaline secretion did not differ signif-
icantly between groups at baseline. Infusion of
CGP42112A at a rate of 0.1 µg kg-1 min-1 (n = 7) increased
(p < 0.05) mucosal alkaline secretion by about 50% as
compared to controls (n = 6). With L-NAME present in the
luminal perfusate at a concentration of 0.3 mM, and intra-
venous administration of CGP42112A (n = 6), the alka-
line secretion increased (p < 0.05) similarly as the group
treated only with the AT2 agonist. The group treated with
HOE140 as a bolus injection (n = 6) 5 min prior to

CGP42112A infusion did not exhibit any increase of the
duodenal mucosal alkaline secretion, neither did controls
(Figure 1). It follows that net change differed significantly
from controls in the groups treated with CGP42112A
alone, and in the presence of L-NAME in the perfusate,
which was not the case in the HOE140-treated group.
Mean arterial pressure was 130(4) mmHg (n = 24) and
was not significantly different between groups at baseline
or change significantly in any group during the protocol.

Distribution of BK2 receptors
Western blot showed a distinct band at the protein size 42
kDa representing specific immunostaining for the BK2 re-
ceptor in rat duodenal tissue (Figure 2). Immunohisto-
chemical staining revealed the presence of the BK2

Figure 1
Alkaline secretion. Effects of intravenous administration of the AT2-receptor agonist CGP42112A (0.1 µg kg-1 min-1) alone 
(n = 7), or combined with L-NAME (0.3 mM) in the luminal perfusate (n = 6) or intravenous injection of the BK2-receptor 
blocker HOE140 (100 ng/kg) (n = 5). Displayed also are untreated time controls receiving only vehicle (NaCl 150 mM) (n = 6). 
Data shown are means(SEM).
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receptor in the mucosa of the duodenum (n = 8).
Moderate staining revealed the presence of the BK2 recep-
tor in the cytoplasm of the enterocytes along the entire vil-
lus length (Figure 3a,3b). The crypt epithelium was more
strongly immunoreactive (Figure 3a,3c). Immunostaining
was also detected in the Meissner and Auerbach nerve pl-
exa (Figure 3d). Sections serving as negative controls (n =
8) were all unstained (Figure 3e).

Discussion
The present study confirms that intravenous administra-
tion of the peptidergic compound CGP42112A stimulates
duodenal mucosal alkaline secretion suggesting that this
secretion is under the control of the RAS [3]. The
CGP42112A-mediated secretory effect was sensitive to the
compound HOE140 indicating involvement of the BK2
receptor.

It has been reported from several organ systems, in partic-
ular the cardiovascular system and the kidney [13–17],
that the AT2 receptor via bradykinin activates the L-arg/
NO pathway. In the gut AT2-receptor activation increases
fluid and sodium absorption and this process is depend-
ent on NO and subsequent cGMP formation [4]. We have
previously shown that duodenal mucosal alkaline secre-
tion elicited by infusion of CGP 42112A at the dose 0.1 µg
kg-1 min-1 can be blocked by PD 123319 [3] and is there-
fore considered to be an AT2 receptor mediated process.
We have also demonstrated that mucosal acid exposure is
dependent on villus epithelial NO production and can be

blocked by intraluminal administration of L-NAME
[9,18,19]. It should be noted that systemic administration
of L-NAME elicits an upward shift of the basal duodenal
mucosal alkaline secretion in the rat [18,20] reflecting
other points of action for the compound and making it
difficult to interpret additional effects on the secretion by
other interferences. Intravenously administered L-NAME
is therefore unsuitable, in our model, as a tool to elucidate
the current discrete mechanisms influencing epithelial
duodenal mucosal alkaline secretion, since the basal se-
cretory levels will nearly overcome the upper limit for
measurement of alkaline secretion. In the present study
we found that intraluminally administered L-NAME, at a
dose that blocks acid-induced alkaline secretion [18], did
not inhibit CGP42112A induced secretion. It may be that
the AT2-receptor-stimulated duodenal alkaline secretory
response has a different pathway of mediation than the
NO-dependent secretion that is induced by luminal acid.
It has been suggested that the bicarbonate secreted from
the villi and the crypts, respectively, are regulated via sep-
arate mechanisms [1].

Apparently, the AT2 receptor does not act via the villus tip
site for NO formation. Supporting this assumption is the
fact that the AT2 receptors are located to the basal part of
the villus core and not at the villus tip epithelium [3].
However, the possibility that NO formation at other sites
within the intestinal wall is activated by AT2-receptor can-
not be ruled out.

The nonapeptide bradykinin is the product of plasma ka-
llikrein proteolytic action on kininogen in plasma. There
are two main receptors for the peptide, BK1 and BK2.
Most known effects of bradykinin are due to actions on
the constitutively expressed BK2 receptor. The BK1 recep-
tor expression is induced during inflammation and the re-
ceptors are mostly involved in prolonged inflammatory
states. Bradykinin and kallikrein are both inactivated by
kininase II (angiotensin converting enzyme). Pharmaco-
logical actions of bradykinin in the gastrointestinal tract
include vasodilation (due to release of NO and PGI2), in-
creased vascular permeability, and stimulation of epithe-
lial ion and fluid transport [21,22] Bradykinin has been
shown to be involved in longitudinal duodenal motor ac-
tivity [23] and to elicit relaxant response in cultured duo-
denal smooth muscle cells [24]. Bradykinin induces
duodenal mucosal alkaline secretion and the receptor has
been proposed to be the BK2 receptor, since such secretory
stimulation was blocked by intravenous administration of
HOE140 [8]. The present finding that HOE140 blocked
duodenal mucosal alkaline secretion elicited by
CGP42112A suggests the formation and release of brady-
kinin in the duodenal wall following AT2-receptor activa-
tion. The BK2 receptor has previously been shown to be
present in the epithelial membranes of rat jejunum and

Figure 2
Western blot BK2 receptor. Typical appearance of a 
Western blot showing a distinct band at the protein size 42 
kDa representing specific immunostaining for the BK2 recep-
tor in rat pituitary cell lysate, serving as a positive control, 
and in rat duodenal tissue.
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Figure 3
Immunohistochemistry BK2 receptor. Section of rat duodenal wall showing immunoreactivity for the BK2 receptor (a). 
Staining is more marked in the crypt epithelium than in the villus epithelium. At higher magnification of the villus (b) immunore-
activity can be localised to the basal part of the cytoplasm in the absorptive cells. In the crypts of Lieberkühn (c) immunstaining 
is somewhat stronger and present in most epithelial cells. Immunoreactivity is also seen in the Auerbach nerve plexus (arrow) 
of the muscle layers. Negative control (d). Bar = 100 µm.
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descending colon[25] and also to be located basally in the
epithelium of the guinea pig ileum [26]. The present study
demonstrates a general immunoreactivity to the BK2 re-
ceptor in the absorptive cells representing cytoplasmic
staining. On the other hand, a stronger immunoreactivity
was apparent in the crypt epithelium. The latter could be
of functional significance for the duodenal mucosal alka-
line secretion regarding the cryptal secretion of bicarbo-
nate [1]. Intestinal location of AT2 receptors has
previously been demonstrated [27,28]. In a recent study
Johansson et al. [3] showed AT2-receptor immunoreactiv-
ity in the lamina propria at the villus base. Taken together,
these findings suggest a spatial relation between the AT2
and BK2 receptors allowing for paracrine signalling. The
cell types that express the AT2 receptors in the villus lam-
ina propria are not known, nor to what extent these cells
are the liberators of bradykinin in turn binding to the BK2
receptors of the cryptal epithelial cells. However, in addi-
tion to the possibility of paracrine cell-to-cell signalling
the vascular organisation also allows for compounds lib-
erated in the subepithelial compartment of the villus to be
transported down-stream by the capillary bloodflow to-
wards the cryptal region [29]. In conclusion, although hy-
pothetical so far, the topographical organisation of
messenger receptors and the vascular arrangement sup-
port our functional findings as depicted in Figure 4. This
design also explains the inability of a luminally adminis-
tered NOS inhibitor to block the duodenal mucosal alka-
line secretion in response to an AT2-receptor agonist. The
physiological significance of angiotensin II mediated ef-
fects on duodenal mucosal alkaline secretion remains to
be elucidated. The AT2 receptor has been ascribed a coun-
terregulatory function modulating actions by the AT1 re-
ceptor. As shown by Johansson et al [3], activation of the
AT1 receptor prolong the neural sympathoadrenergic in-
hibition of mucosal alkaline secretion, probably as part of
a general restriction of volume and buffer excretion dur-
ing stress on the circulatory system, e.g. blood loss. Re-
strictions of epithelial alkalinisation in the upper gut
increase the risk of mucosal injuries by gastric acid present
in the luminal compartment. It may be speculated that the
AT2 receptor, via a bradykinin dependent pathway, stim-
ulates mucosa-protective alkaline secretion in order to off-
set this increased risk for autodigestive injury. The present
results suggest that the AT2-receptor-stimulated alkaline
secretion is mediated via BK2 receptors probably situated
in the duodenal crypt epithelium.

Conclusions
The present results suggest that the AT2-receptor-stimulat-
ed alkaline secretion is mediated via BK2 receptors proba-
bly situated in the duodenal cryptal mucosal epithelium.

Methods
The study was approved by the Ethics Committee of Ex-
periments on Animals, Goteborg University. Animals
were housed in thermostatically controlled humidified
rooms with a daylight-darkness cycle of 12h and fed
standard rat chow and water ad libitum.

Anaesthesia and surgical procedure
Experiments were performed on non-fasted male Sprague-
Dawley rats weighing 300–350 g. Anaesthesia was in-
duced by methohexital (60 mg/kg i.p.) and maintained by
α-chloralose as a bolus injection (50 mg kg-1) followed by
a continuous infusion (25 mg kg-1 h-1). Lack of response
to interdigital reflex stimuli confirmed an adequate anaes-
thetic condition. A thermostatically controlled heating
pad and a lamp kept the body temperature at 38°C. Free
airways were ensured by a catheter inserted into the
trachea. The right femoral vein and artery were catheter-
ised for drug infusions and measurement of blood

Figure 4
Hypothetical depiction of mechanisms involved in 
CGP42112A-stimulated alkaline secretion. Hypotheti-
cal depiction of mechanisms involved in CGP42112A-stimu-
lated alkaline secretion. Black arrows indicate alkaline 
secretions from crypts and the villi (#1-Flemstrom [1]). Red 
and blue arrows indicate precapillary and postcapillary blood 
flow, respectively (#2 – Jodal et al [29]). Green area indicates 
the location of iNOS protein involved in acid-induced alkaline 
secretion by the villus epithelium (#3 -Holm et al [9,18]). The 
location of AT2 receptors is indicated by dotted area (#4 -
Johansson et al [3]). Orange areas indicate the location of 
BK2 receptors (#5 – Ewert et al, present study).
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pressure (using a Statham P23Dc pressure transducer and
a computer to obtain averages over 5-min periods), re-
spectively. To avoid acidosis and compensate for basal
needs and fluid losses due to the surgical trauma an isot-
onic buffered glucose (2.5%) solution was infused intra-
arterially (1 ml h-1) throughout the experiments. A mid-
line laparotomy was performed. The common bile duct
was catheterised 5 mm proximal to the papilla of Vateri
and secretions of bile and pancreatic juice were collected
outside the animal to avoid contamination of the duode-
nal perfusate. A duodenal segment (length 1.5 cm and
proximal end 0.5 cm distal to the pylorus) was isolated
between two glass tubes connected to a reservoir enclosed
by a water jacket for maintenance of 38°C. Saline solution
(150 mMNaCl) was perfused and recirculated through the
reservoir and duodenal segment by means of a gas lift (air,
150 ml min-1). Alkaline secretion into the luminal per-
fusate was titrated to pH 7.40 by automatic infusion of
isotonic HCl using a pH-stat equipment [10].

Immunohistochemistry
After the completed protocol, the midportion of the duo-
denal segment under study was removed and fixed in 4%
formaldehyde in phosphate buffered saline (pH 7.4) over
night. The specimens were subsequently dehydrated in
ethanol, cleared in xylene and embedded in paraffin. Sec-
tions (4 µm) were cut and mounted on glass slides. The
sections were deparaffinized in xylene, rehydrated in
decreasing concentrations of ethanol and then boiled for
15 min in citrate buffer (pH 6.0) for antigen retrieval. The
Immunocruz™ Staining System (Santa Cruz Biotechnolo-
gy Inc, CA, USA) was used for the immunohistochemistry
protocol. Endogenous peroxidase was quenched by 5 min
incubation in peroxidase blocking solution. Endogenous
biotin in the tissue was blocked using Biotin Blocking Sys-
tem (Dakopatts AB, Alvsjo, Sweden). Non-specific
binding was blocked by incubation in 5% non-fat dry
milk in PBS pH 7.5 and incubation in normal goat serum.
Sections were incubated over night at 4°C with mouse
monoclonal primary antibody specific for the BK2 recep-
tor (Transduction Laboratories, Lexington, USA) at a con-
centration of 5 µg/ml prior to incubation with secondary
antibody (anti-mouse IgG of goat origin) for 30 min at
room temperature. Sections serving as negative controls
were instead incubated with normal mouse IgG. Immu-
noreactivity was detected by means of horseradish-perox-
idase-streptavidin complex using diaminobenzidine as a
marker. Subsequently, the sections were dehydrated in
ethanol and xylene and finally mounted and covered by
glass slips.

Western blot analysis
In a separate series of experiments duodenal specimens of
full wall thickness were collected, immediately frozen in
liquid nitrogen and stored at -70°C. The specimens were

homogenized on ice (Polytron, Kinematica AG, Switzer-
land) in buffer A (10% glycerol, 20 mmol/L Tris-HCl pH
7,3, 100 mmol/L sodium chloride, 2 mmol/L phenyl-
methylsulfonyl fluoride, 2 mmol/L EDTA, 2 mmol/L EG-
TA, 10 mmol/L sodium orthovanadate, 10 µg/mL
leupeptin, and 10 µg/mL aprotinin) [11].

Centrifugation was performed at 30,000 g for 30 min at
4°C. The pellet was resuspended in buffer B (1 % NP-40
(Sigma Chem Inc, St Louis, MO, USA) in buffer A) and
subsequently stirred at 4°C for one hour before centrifu-
gation at 30,000 g for 30 min at 4°C. The supernatant was
analysed for protein content by the method of Bradford
[12] and stored at -70°C for further analysis. Samples
were diluted in SDS buffer and heated at 70°C for 10 min
before they were loaded on a NuPage 10% Bis-Tris gel and
then electrophoresed in a MOPS buffer (Invitrogen AB,
Lidingo, Sweden). One lane of each gel was loaded with
SeeBlue™ prestained molecular weight standards (Invitro-
gen AB) and one lane was loaded with rat pituitary cell
lysate (Transduction Laboratories) serving as a positive
control. After the electrophoresis the proteins were trans-
ferred to a polyvinyldifluoride membrane (Amersham,
Buckinghamshire, UK) which was incubated with a specif-
ic antibody of mouse origin directed against the BK2 re-
ceptor (Transduction Laboratories). An alkaline
phosphatase conjugated goat anti-mouse IgG2b (Santa
Cruz) and CDP-Star (Tropix, Bedford, MA, USA) as a sub-
strate were used to identify immunoreactive proteins by
chemiluminescense. Images were captured by a LAS-100
cooled CCD-camera (Fujifilm, Tokyo, Japan).

Experimental protocol
After surgery the animals were left undisturbed for 30
min. Subsequently, duodenal mucosal alkaline secretion
and mean arterial pressure were recorded during a 30 min
baseline period. Intravenous infusion of the AT2-receptor
agonist CGP42112A (0.1 µg kg-1 min-1) was initiated im-
mediately after the baseline period and maintained
throughout the protocol. In animals treated with L-
NAME, the drug was present (0.3 mM) in the doudenal
perfusate during baseline recordings. Animals treated
with HOE140 received this drug as an iv bolus injection
(100 ng/kg) 5 min prior to onset of CGP42112A infusion
(0.1 µg kg-1 min-1). Controls received only the saline ve-
hicle. Animals were monitored for 60 min after the onset
of the drug infusions and then the experiment was
terminated.

Drugs
Methohexital (Brietal™, Lilly Inc., IN, USA) was dissolved
in saline solution (150 mM NaCl). α-chloralose (Kebo
Lab, Spanga, Sweden) was dissolved in tetraborate dec-
ahydrate (Merck, Darmstadt, Germany) and titrated to pH
7.40. CGP42112A (peptidergic AT2-receptor
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agonist)(Neosystem, Strasbourg, France), NG-nitro-L-Ar-
ginine methyl ester hydrochloride (L-NAME) (Sigma) and
HOE140 (Hoechst AG, Frankfurt, Germany) were each
freshly dissolved in saline solution.

Statistics
Differences in duodenal mucosal alkaline secretion and in
mean arterial pressure between groups were analysed by
ANOVA and Bonferroni post-hoc test. Net change was de-
fined as the difference between an average of the last 15-
min period of drug administration and basal conditions.
All data presented are means(SEM). A p-value < 0.05 was
considered significant.
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