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Abstract
Background: Prolactin promotes proliferation of several cells. Prolactin receptor exists as two isoforms: long and short,
which activate different transduction pathways including the Ca2+-dependent PKC-signaling. No information exists on the
role of prolactin in the regulation of the growth of female cholangiocytes. The rationale for using cholangiocytes from
female rats is based on the fact that women are preferentially affected by specific cholangiopathies including primary
biliary cirrhosis. We propose to evaluate the role and mechanisms of action by which prolactin regulates the growth of
female cholangiocytes.

Results: Normal cholangiocytes express both isoforms (long and short) of prolactin receptors, whose expression
increased following BDL. The administration of prolactin to normal female rats increased cholangiocyte proliferation. In
purified normal female cholangiocytes, prolactin stimulated cholangiocyte proliferation, which was associated with
increased [Ca2+]i levels and PKCβ-I phosphorylation but decreased PKCα phosphorylation. Administration of an anti-
prolactin antibody to BDL female rats decreased cholangiocyte proliferation. Normal female cholangiocytes express and
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secrete prolactin, which was increased in BDL rats. The data show that prolactin stimulates normal cholangiocyte growth
by an autocrine mechanism involving phosphorylation of PKCβ-I and dephosphorylation of PKCα.

Conclusion: We suggest that in female rats: (i) prolactin has a trophic effect on the growth of normal cholangiocytes
by phosphorylation of PKCβ-I and dephosphorylation of PKCα; and (iii) cholangiocytes express and secrete prolactin,
which by an autocrine mechanism participate in regulation of cholangiocyte proliferation. Prolactin may be an important
therapeutic approach for the management of cholangiopathies affecting female patients.

Background
Cholangiocytes have a low replicative activity in the nor-
mal state [1-3], but they proliferate or undergo apoptosis
in cholangiopathies [3-6], progressive liver disorders char-
acterized by an abnormal balance between cholangiocyte
proliferation and death, leading to vanishing of intrahe-
patic bile ducts [3,4]. It has been hypothesized that sex
hormones play a role in the pathogenesis of some cholan-
giopathies [4,7,8]. In particular, the most common of
them, primary biliary cirrhosis (PBC), is more common in
women, and its clinical outbreak is typically after meno-
pause [4,9]. The low expression of estrogen receptor alpha
in PBC and their disappearance in the advanced histolog-
ical stages of this disease suggests that an estrogenic defi-
ciency could favor the evolution of PBC toward
ductopenia [7]. Furthermore, a study demonstrated that:
(i) ovariectomy to BDL female rats induced a decrease in
intrahepatic ductal mass; and (ii) administration of 17-β
estradiol during BDL to ovariectomized rats prevented the
decrease in the number of bile ducts [10].

Prolactin is a pituitary hormone and a pleiotropic
cytokine that promotes cellular proliferation, differentia-
tion and survival in a number of cells [11]. Two different
isoforms of the prolactin receptor exist: they are both
encoded by a single gene, by which the two isoforms (a
short and a long form) are obtained by alternative splicing
[12]. The long and short forms are both membrane bound
receptors with an identical binding site for prolactin, but
differ in the length of their cytoplasmic tail [12]. Prolactin
binding to the long or short form of prolactin receptors
activates different signaling pathways including mitogen-
activated protein kinase (MAPK) [13], JAK/STAT [14], and
Ca2+/PKC [13]. While long prolactin receptors activate
several signaling pathways including JAK/STAT [15], the
short isoform of prolactin receptor activates various
kinases and interacts with 17-hydroxy-steroid dehydroge-
nase pathways [16,17]. The long form of the prolactin
receptor mediates activation of the Ca2+-dependent PKC
signaling in a number of cells [18,19].

Although studies have shown differences in the expres-
sion of prolactin receptors between hepatocytes and
cholangiocytes of normal and cholestatic livers [20-23],
no information exists on the role of prolactin on the reg-
ulation of cholangiocyte growth. The rationale for using

cholangiocytes from female rats is based on the fact that
women are preferentially affected by specific cholestatic
liver diseases including PBC [9]. We addressed these ques-
tions: (i) Do normal and BDL female and male cholangi-
ocytes express prolactin receptors? (ii) Does in vivo
administration of prolactin to normal female and male
rats increase cholangiocyte proliferation? (iii) Are prolac-
tin effects on normal cholangiocyte proliferation of
female rats associated with increased intracellular Ca2+

([Ca2+]i) levels and differential phosphorylation of Ca2+-
dependent PKC isoforms (α, β-I, β-II and γ, which are
important in the regulation of biliary functions) [24-29]?
(iv) Does the in vivo administration of an anti-prolactin
antibody to BDL female and male rats inhibit cholangi-
ocyte hyperplasia? and (v) Do female cholangiocytes
express the message and protein for prolactin and secrete
prolactin?

Results
Cholangiocytes express prolactin receptors
Immunohistochemistry in liver sections from normal and
BDL female and male rats shows that cholangiocytes
express prolactin receptors (Figure 1, see arrows). By
immunofluorescence, immunoreactivity for prolactin
receptor is co-localized with the expression of cytokeratin-
19 (CK-19, a marker of cholangiocytes) [2] (Figure 2); in
the merged photograph there is co-localization of prolac-
tin receptor and CK-19 (Figure 2). No immunohisto-
chemical reaction was observed when a consecutive liver
section of the same field was incubated with non-immune
serum (Figure 1). Parallel to other studies [23], prolactin
receptors are also expressed by hepatocytes from normal
and BDL female and male rats (Figures 1 and 2).

By RT-PCR, normal and BDL female cholangiocytes
expressed the expected molecular weight band for the
message for the short (582 bp) and long (781 bp) form of
prolactin receptor, and for glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, the housekeeping gene) (294
bp) (not shown). Sequence analysis of the RT-PCR frag-
ments shows that both the rat short and long prolactin
receptors are 98% homologous to the short (NCBI Gen-
bank accession No. NM 012630) [23] and long rat prolac-
tin receptor mRNAs (NCBI Genbank accession No. NM
001034111) [23]. By real time PCR, normal female
cholangiocytes express both the short and long form of
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prolactin receptor mRNA (expressed as a ratio to GAPDH
mRNA) (Figure 3); following BDL, the expression of the
short and long form of prolactin receptor mRNA signifi-
cantly increased in purified female cholangiocytes (Figure
3).

Effect of in vivo administration of prolactin to normal rats 
on serum prolactin levels, portal inflammation, necrosis 
and cholangiocyte apoptosis and proliferation
Chronic in vivo administration of prolactin to normal
female rats increased prolactin serum levels compared to
normal rats treated with NaCl for 1 week (Table 1). H&E
staining of paraffin-embedded liver sections demon-
strated that there were no significant differences in the
degree of portal inflammation, necrosis, apoptosis and
lobular damage between NaCl- and prolactin-treated nor-
mal female rats (Table 1). Administration of prolactin to
normal female rats increased the number of proliferating
cellular nuclear antigen (PCNA)- and CK-19-positive
cholangiocytes compared with normal rats treated with
NaCl (Figure 4). Prolonged administration of prolactin to
normal male rats did not change intrahepatic ductal mass
(evaluated by γ-GT histochemistry) [30] compared to nor-
mal male rats treated with NaCl [1.0 ± 0.2 % volume (nor-
mal + prolactin) vs. 1.0 ± 0.2 % volume (normal + NaCl);
not significantly different].

Effect of prolactin on [Ca2+]i levels and phosphorylation of 
Ca2+-dependent PKC isoforms in normal female 
cholangiocytes
Prolactin induced a sustained increase in [Ca2+]i levels in
normal female cholangiocytes compared with cholangi-
ocytes treated with 0.2% BSA (Figure 5, top panel). A cal-
cium tracing, which is the average of three independent
measurements, is shown in Figure 5 (lower panel). As the
tracing shows there is no change in fluorescence during
the basal measurement period that demonstrates that the
cells do not leak as influx of extracellular calcium would
alter fluorescence (Figure 5, lower panel). Cholangiocyte
responsiveness to the Ca2+ ionophore, ionomycin [31], is
shown in Figure 5 (lower panel).

When purified female cholangiocytes were treated with
prolactin, there was an increase in the phosphorylation of
PKCβ-I and a decrease in PKCα phosphorylation (Figure
6); no significant changes in the phosphorylation of
PKCβ-II and PKCγ were observed in normal female
cholangiocytes treated with prolactin (Figure 6).

Effect of in vivo administration of anti-prolactin antibody 
on cholangiocyte proliferation of BDL rats
Cholangiocytes express prolactin
The administration of anti-prolactin antibody to BDL
female rats decreased prolactin serum levels and amelio-
rates portal inflammation, necrosis and lobular damage
compared to BDL rats treated with non-immune serum

The localization of prolactin receptor in the liver was evaluated by immunohistochemistry (scale bar = 50 μm) in liver sections from normal and BDL female and male ratsFigure 1
The localization of prolactin receptor in the liver was evaluated by immunohistochemistry (scale bar = 50 μm) in liver sections 
from normal and BDL female and male rats. Bile ducts from normal and BDL female and male rats express these receptors 
(arrows). No immunohistochemical reaction was observed when a consecutive liver section of the same field was incubated 
with non-immune serum. Hepatocytes from normal and BDL female and male rats express the prolactin receptor.
Page 3 of 15
(page number not for citation purposes)



BMC Physiology 2007, 7:6 http://www.biomedcentral.com/1472-6793/7/6

Page 4 of 15
(page number not for citation purposes)

The localization of prolactin receptor in the liver was evaluated by immunofluorescence (scale bar = 20 μm) in liver sections from normal and BDL female and male ratsFigure 2
The localization of prolactin receptor in the liver was evaluated by immunofluorescence (scale bar = 20 μm) in liver sections 
from normal and BDL female and male rats. By immunofluorescence, prolactin receptor immunoreactivity (red) was co-local-
ized with CK-19 immunoreactivity (green; indicated by arrows) demonstrating cholangiocyte expression; sections were coun-
terstained with DAPI; in the merged photograph we show co-localization of prolactin receptor and CK-19. Hepatocytes from 
normal and BDL female and male rats express the prolactin receptor.
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for 1 week (Table 1). Administration of anti-prolactin
antibody to BDL female rats decreased the number of
PCNA- and CK-19-positive positive cholangiocytes com-
pared to liver sections from BDL rats treated with non-
immune serum (Figure 7). Prolonged administration of

anti-prolactin antibody to BDL male rats did not change
intrahepatic ductal mass (evaluated by γ-GT histochemis-
try) [30] compared to BDL male rats treated non-immune
serum [4.5 ± 1.0 % volume (BDL + anti-prolactin anti-

Table 1: Evaluation of prolactin serum levels, inflammation, necrosis, lobular damage and apoptosis in liver sections after in vivo 
administration of: (i) NaCl or prolactin to normal rats for 1 week; or (ii) anti-prolactin antibody or non-immune serum to BDL 
(immediately following BDL) rats for 1 week.

Treatment Normal rats + NaCl for 1 
week

Normal rats + PRL for 1 
week

BDL rats + non-immune 
serum for 1 week

BDL rats + anti-PRL 
antibody for 1 week

Prolactin serum levels (ng/ml) 6.6 ± 0.16 98.4 ± 1.5* 63.4 ± 1.0 14.0 ± 0.2*
Inflammation 0 ± 0 0.4 ± 0.2ns 1.6 ± 0.2 0.8 ± 0.2*

Necrosis 0 ± 0 0.42 ± 0.2ns 1.0 ± 0.0 0.6 ± 0.2*
Lobular damage 0.06 ± 0.06 0.26 ± 0.11ns 1.8 ± 0.14 0.9 ± 0.06*

Cholangiocyte Apoptosis 0 ± 0 0.2 ± 0.2ns 0.6 ± 0.2 0.8 ± 0.2ns

Inflammation, necrosis, lobular damage and apoptosis were evaluated in paraffin embedded liver sections (5 μm) stained with hematoxylin and eosin. In vivo administration of 
prolactin to normal rats for 1 week increased prolactin serum levels but did not alter liver inflammation, necrosis, lobular damage or apoptosis compared to NaCl-treated 
normal female rats. The administration of anti-prolactin antibody to BDL female rats decreased prolactin serum levels and ameliorated portal inflammation, necrosis and 
lobular damage compared to BDL rats treated with non-immune serum for 1 week. Data on prolactin serum levels are mean ± SEM of 3 samples from 3 different rats. Data 
(mean ± SEM) related to the measurement of inflammation, necrosis, lobular damage and cholangiocyte apoptosis are obtained from the analysis of 3 slides per portal tract. 
*p < 0.05 vs. its corresponding value from BDL rats treated with non-immune serum.

Real time PCR for the message for the short and long form of prolactin receptor in total cholangiocyte RNA (0.75 μg) from normal and BDL female ratsFigure 3
Real time PCR for the message for the short and long form of prolactin receptor in total cholangiocyte RNA (0.75 μg) from 
normal and BDL female rats. Normal female cholangiocytes express both the short and long form of prolactin receptor mRNA 
(expressed as ratio to GAPDH mRNA); following BDL, the expression of both the short and long form of prolactin receptor 
mRNA (expressed as ratio to GAPDH mRNA) significantly increased in purified cholangiocytes. Data are mean ± SEM of 3 
experiments. *p < 0.05 vs. relative expression of short and long prolactin receptor mRNA of normal cholangiocytes. NR = 
normal rat; PRLR = prolactin receptor.
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body) vs. 3.7 ± 0.8 % volume (BDL + non-immune
serum); not significantly different].

By immunohistochemistry in liver sections, bile ducts
from normal and BDL female rats express the protein for
prolactin (Figure 8, arrows). No staining was seen when a
consecutive liver section of the same field was incubated
with non-immune serum (Figure 8). By real time PCR, we
have demonstrated that: (i) female normal cholangiocytes
express prolactin mRNA at low levels (Figure 9); (ii) fol-
lowing BDL, prolactin mRNA markedly increased in
female cholangiocytes (Figure 9); and (iii) primary cul-
tures of normal and BDL female cholangiocytes secrete
prolactin [14.0 ± 1.0 ng/ml (normal cholangiocytes); and
11.0 ± 2.2 ng/ml (BDL cholangiocytes); n = 7).

Discussion
Our study demonstrates that prolactin regulates the
growth of female cholangiocytes presumably by an auto-
crine mechanism. We first demonstrated in liver sections
that cholangiocytes from normal and BDL female and
male rats express prolactin receptors. By real time PCR: (i)
normal female cholangiocytes expressed both the short
and long form of prolactin receptor mRNA; and (ii) fol-
lowing BDL, the expression of the short and long form of
prolactin receptors increased in female cholangiocytes.
Our data on cholangiocyte prolactin receptor expression
are slightly different to those of previous studies in albino
mongrel rats [23] showing that: (i) normal isolated intra-
hepatic bile duct units (IBDU) predominantly express the
message for the long form of the prolactin receptor,

Measurement of the number of [top panel] PCNA- and [lower panel] CK-19-positive cholangiocytes in liver sections (5 μm, 3 slides analyzed per group) and [c] PCNA protein expression in purified female cholangiocytes from NaCl- or prolactin-treated ratsFigure 4
Measurement of the number of [top panel] PCNA- and [lower panel] CK-19-positive cholangiocytes in liver sections (5 μm, 3 
slides analyzed per group) and [c] PCNA protein expression in purified female cholangiocytes from NaCl- or prolactin-treated 
rats. Administration of prolactin to normal female rats increased the number of PCNA-positive cholangiocytes (arrows) and 
CK-19-positive cholangiocytes compared with normal rats treated with NaCl. Orig. magn., ×20 (PCNA) and ×10 (CK-19). 
Data are mean ± SEM of 5 values obtained from the 3 slides evaluated per each group of animal. * p < 0.05 vs. the correspond-
ing value of NaCl-treated rats.
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whereas the expression of the short form of the prolactin
receptor is very low or absent [23]; and (ii) following BDL,
the genetic expression of the long form markedly
increases in IBDU whereas the short form of prolactin
receptor slightly increased in IBDU [23]. The slight differ-
ence between these data is presumably due to the different
strain of rats used in our studies (female 344 Fischer) and
the other studies (albino mongrel) [23]. Prolactin recep-
tors are expressed by rat hepatocytes in the sinusoidal
domain of cellular membranes and in perinuclear areas
[32]. Prolactin receptors are also expressed by human
hepatocytes of patients with obstructive jaundice of differ-
ent etiology, but prolactin receptor expression is lower in

hepatocytes compared to human cholangiocytes [21].
Although these previous studies have shown that cholan-
giocytes express prolactin receptors [21,23], no informa-
tion exists on the role of prolactin in the regulation of
cholangiocyte hyperplasia.

We next performed in vivo studies and demonstrated that
the administration of: (i) prolactin to normal female rats
induces cholangiocyte hyperplasia devoid of portal
inflammation and hepatic damage; and (ii) anti-prolactin
antibody to BDL female rats decreases cholangiocyte pro-
liferation and ameliorates portal inflammation and
hepatic damage. The most likely explanation why prolac-
tin increased cholangiocyte growth but not portal inflam-
mation and hepatic damage in normal rats is that
prolactin induces cholangiocyte hyperplasia as a direct
effect and not as a consequence of obstructive cholestasis
(i.e., BDL), a pathological condition associated with
increased portal inflammation [33,34]. In support of our
findings, a number of studies have shown that certain bile
acids, vascular endothelial growth factor and forskolin
induce cholangiocyte hyperplasia devoid of apoptosis,
necrosis, hepatic damage or portal inflammation
[31,35,36]. However, in BDL, which is accompanied by
an inflammatory response along with cholestasis
[33,37,38], the blocking of prolactin with an antibody
reduces hepatic damage and cholangiocyte proliferation
along with suppression of some inflammatory responses.

Concomitant with enhanced ductal hyperplasia, there was
increased prolactin serum levels in normal female rats
treated with prolactin compared to NaCl treated rats. In
BDL female rats, the serum levels of prolactin increased
approximately 15-fold as compared to the levels of nor-
mal female rats. Moreover, the administration of anti-pro-
lactin antibody to BDL rats reduces not only
cholangiocyte proliferation but also prolactin serum lev-
els. We suggest that changes in prolactin serum levels may
be important in the regulation of cholangiocyte growth in
chronic cholestatic liver diseases.

In different cell types, prolactin effects are mediated by an
increase in Ca2+ levels and PKC activation [11,39]. Thus,
we evaluated the role of the Ca2+/PKC signaling pathway
in prolactin regulation of cholangiocyte hyperplasia. Our
results show that [Ca2+]i levels are increased in normal
female cholangiocytes after in vitro prolactin stimulation
as compared to cholangiocytes stimulated with BSA. From
our previous experience with purified cholangiocytes and
cholangiocarcinoma cell lines we do not expect a tradi-
tional calcium spike [24,26,29,40,41]. In our previous
studies [24,26,29,40,41], we demonstrated that the Ca2+

dynamics of cholangiocytes are in general slower and not
characterized by a Ca2+ spike [24,26,29,40,41]. The
method that we currently employ results in Ca2+ measure-

Determination of [Ca2+]i levels in female normal rat cholangi-ocytes treated with 0.2% BSA or 100 nM prolactinFigure 5
Determination of [Ca2+]i levels in female normal rat cholangi-
ocytes treated with 0.2% BSA or 100 nM prolactin. Prolactin 
induced a sustained increase in [Ca2+]i levels compared with 
cholangiocytes treated with 0.2% BSA [top panel]. Data are 
mean ± SEM of 4 experiments. * p < 0.05 vs. the correspond-
ing basal values. [lower panel] A calcium tracing, which is the 
average of three independent measurements, is shown in 
shown. As the tracing shows there is no change in fluores-
cence during the basal measurement period that demon-
strates that the cells do not leak as influx of extracellular 
calcium would alter fluorescence. Cholangiocyte responsive-
ness to the Ca2+ ionophore, ionomycin, is shown.
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ments [29,31], which are an average signal of 400,000
cells rather than typical single cell measurements
[24,26,40]. This approach gives us similar data [29,31] to
that obtained with measurements, which were made in
single cells loaded with Fluo-3AM [24,26,40]. Since the
measurements are taken in a large number of cells the cel-
lular response to prolactin is not synchronized in the stud-
ies. Thus, any peak(s) present will be muted and spread
out over time, which is a factor contributing to the slow
drift observed. In support of our finding, Ducret et al.
demonstrated a similar slow response calcium wave due
to prolactin in glia cells [42].

We next evaluated if prolactin stimulation of cholangi-
ocyte proliferation was coupled with phosphorylation/
dephosphorylation of specific Ca2+-dependent PKC iso-
forms. Our finding that prolactin stimulation of normal
female cholangiocyte proliferation is associated with con-
comitant increased (PKCβ-I) and decreased (PKCα) PKC
phosphorylation suggests that a counterbalancing system
between PCKβ isoform and PKCα may regulate cholangi-
ocyte proliferation following prolactin stimulation. In
support of this concept, while enhanced phosphorylation
of PKCβ-II mediates the activation of secretin-stimulated

ductal secretion [29] (a functional marker of cholangi-
ocyte growth) [1,2,4,6,25,43] of BDL rats, increased phos-
phorylation of PKCα (which is inversely related to
cholangiocyte growth) is associated with reduced cholan-
giocyte growth [24,25,40]. In agreement with the view, in
hematopoietic [44] and glioma [45] cells, the activation
of PKCβ-I and β II isoforms leads to an increase in cell
proliferation. Furthermore, in intestinal cell lines the
overexpression and/or activation of PKCα decreases cell
growth and tumorigenicity [46]. Taken together, our stud-
ies show that the Ca2+/PKCβ-I and α signaling pathway is
one of the players involved in prolactin regulation of
cholangiocyte proliferation, but did not evaluate if other
pathways (e.g., JAK/STAT and 17-hydroxy-steroid dehy-
drogenase) modulate prolactin effects on cholangiocyte
growth. Also, our studies do not establish which isoform
(short or long) of the prolactin receptor mediates the
effects of prolactin on cholangiocyte growth. However,
based upon previous studies showing that the long form
of prolactin receptor mediates increases in [Ca2+]i in other
cells [18,19,47], we propose that the long form of the pro-
lactin receptor may be the major player in prolactin mod-
ulation of cholangiocyte growth.

Next, we demonstrated that normal and BDL female
cholangiocytes express the message and protein for prol-
actin and secrete prolactin in primary cultures. The reason
why prolactin secretion is similar in normal and BDL
female cholangiocytes (although prolactin message
expression increases in BDL cholangiocytes) may be due
to post-transcriptional events (e.g., message stability/deg-
radation) affecting the translation of the prolactin mes-
sage. On the basis of these findings, although our studies
do not provide direct evidence for the following concept,
we propose that prolactin may regulate cholangiocyte
proliferation by an autocrine mechanism (in addition to
a paracrine pathway). In agreement with the latter con-
cept, a number of cells including mammary epithelial
cells, fibroblasts, and cancer cell lines [12,15] secrete pro-
lactin, thus regulating their functions. Furthermore, in
support of the concept that prolactin regulates cholangi-
ocyte proliferation by an autocrine mechanism, we have
previously shown that cholangiocytes express/secrete neu-
rotrophins [33], vascular endothelial growth factor [31]
and serotonin [48], thus regulating intrahepatic ductal
mass by an autocrine mechanism [31,33,48].

Conclusion
In summary this study has shown that: (i) cholangiocytes
express both isoforms (long and short) of the receptor for
prolactin; (ii) prolactin has a trophic effect on the growth
of normal female cholangiocytes by phosphorylation of
PKCβ-I and dephosphorylation of PKCα; and (iii) cholan-
giocytes express the message/protein for and secrete prol-
actin, findings suggesting that prolactin participates, by an

In vitro effect of prolactin on the phosphorylation of Ca2+-dependent PKC isoformsFigure 6
In vitro effect of prolactin on the phosphorylation of Ca2+-
dependent PKC isoforms. Immunoblots for PKC-α, PKC-β-I, 
PKC-β-II and PKC-γ in normal female cholangiocytes stimu-
lated for 90 minutes at 37°C with 0.2% BSA (basal value) or 
prolactin (100 nM) with 0.2% BSA. When cholangiocytes 
were treated with prolactin, there was an increase in the 
phosphorylation of PKCβ-I and a marked decrease in PKCα 
phosphorylation; no significant changes in the phosphoryla-
tion of PKCβ-II and PKCγ were observed in normal female 
cholangiocytes treated with prolactin or 0.2% BSA. Data are 
mean ± SEM of 3 experiments. * p < 0.05 vs. corresponding 
basal values. PKC = protein kinase C.
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autocrine mechanism, in the modulation of cholangi-
ocyte proliferation. Prolactin may be an important thera-
peutic approach for the management of cholangiopathies.

Methods
Materials
Reagents were purchased from Sigma Chemical (St Louis,
MO) unless otherwise indicated. The RIA kit for the meas-
urement of prolactin levels in serum and cholangiocyte
supernatant was purchased from GE Healthcare Bio-Sci-
ences Corp. (Piscataway, NJ). The monoclonal mouse
antibody against PCNA was purchased from DAKO
(Kyoto, Japan). PCNA is a nonhistone nuclear protein
that plays an important role in DNA replication and cellu-
lar proliferation by interacting with DNA polymerase-
delta) [49]. The substrate for γ-glutamyl transpeptidase (γ-
GT), N (γ-L-glutamyl)-4-methoxy-2-naphthylamide was

purchased from Polysciences (Warrington, PA). Antibod-
ies against prolactin and the Ca2+-dependent PKC iso-
forms (α, β-I, β-II and γ) were purchased from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA). The sheep polyclo-
nal (ab35349) antibody recognizing the prolactin recep-
tor (used for the immunohistochemical and
immunofluorescent evaluation of prolactin receptor in
liver sections) was purchased from Abcam (Cambridge,
UK). This antibody does not distinguish between the
short or long form of the prolactin receptor. The RNeasy
Mini Kit to extract total RNA from purified cholangiocytes
was purchased from Qiagen Inc, Valencia, CA.

Experimental model
Female or male Fisher rats (150–175 gm) were purchased
from Charles River (Wilmington, MA) and maintained in
a temperature-controlled environment (20–22°C) with a

Administration of anti-prolactin antibody to female BDL rats decreased the number of [top panel] PCNA-positive cholangi-ocytes and [lower panel] CK-19-positive cholangiocytes compared to cholangiocytes from BDL female rats treated with non-immune serumFigure 7
Administration of anti-prolactin antibody to female BDL rats decreased the number of [top panel] PCNA-positive cholangi-
ocytes and [lower panel] CK-19-positive cholangiocytes compared to cholangiocytes from BDL female rats treated with non-
immune serum. Orig. magn., ×20 (PCNA) and ×10 (CK-19). Data are mean ± SEM of 5 values obtained from the 3 slides eval-
uated per each group of animal. * p < 0.05 vs. the corresponding value of BDL rats treated with non-immune serum.
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12:12-hour light-dark cycle. Rats were fed ad libitum stand-
ard chow and had free access to drinking water. To evalu-
ate the in vivo effect of prolactin on cholangiocyte growth,
normal female or male rats were injected twice per day
with NaCl or ovine prolactin (420 μg/rat per day, a dose
similar to that used in other studies in rodents) [50] for 1
week. We evaluated the effect of the administration of
anti-prolactin antibody on cholangiocyte proliferation of
BDL female or male rats. Immediately after BDL [43], rats
received 200 μL of non-immune serum or polyclonal neu-
tralizing prolactin antibody (400 pg/dose, intraperito-
neally every day) [51] for 7 days. Before each experimental
procedure, animals were injected with sodium pentobar-
bital (50 mg/kg weight, IP). Study protocols were per-
formed in compliance with the institutional guidelines.

Purification of cholangiocytes
Cholangiocytes were isolated by immunoaffinity separa-
tion [1,2,25,52,53], using a mouse monoclonal antibody
(IgM, provided by Dr. R. Faris, Brown University, Provi-
dence, RI) that recognizes an unidentified antigen
expressed by all intrahepatic rat cholangiocytes [52]. The
purity of cholangiocytes was evaluated by γ-GT histo-
chemistry [30]. Cell viability (by trypan blue exclusion)
ranged from 95 to 98%.

Expression of prolactin receptors in cholangiocytes
For immunohistochemistry, after deparaffination of liver
sections (5 μm thick; 3 slides analyzed per group), endog-
enous peroxidase activity was quenched for 5 minutes
with methanol-peroxide solution (0.3% hydrogen perox-
ide solution, Santoku Chemical Industries, Tokyo, Japan)
in 80% methanol (WAKO, Osaka, Japan). Sections were

Immunohistochemistry for prolactin in liver sections of normal and BDL female rats shows that intrahepatic bile ducts express the protein for prolactin (arrows)Figure 8
Immunohistochemistry for prolactin in liver sections of normal and BDL female rats shows that intrahepatic bile ducts express 
the protein for prolactin (arrows). Bar = 50 μm.
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hydrated in graded alcohol and rinsed in 1× phosphate-
buffered saline (1× PBS, pH 7.4) before applying the anti-
body specific for prolactin receptor (diluted 1:400) or
non-immune serum at 4°C overnight. After rinsing with
PBS, Histofine Simple Stain Rat (Multi) (Nichirei, Tokyo,
Japan) was added as secondary antibody for 1 hour at
room temperature. Nuclear counterstaining was per-
formed using hematoxylin for light microscopy after
detecting reactions with VECTOR NovaRED (Vector Labo-
ratories, Inc., Burlingame, CA). Following staining, sec-
tions were observed with the light microscope ECLIPSE
E600 (Nikon, Tokyo, Japan).

For immunofluorescence, frozen liver sections (20 μm
thick; n = 3 per each group of animals) were fixed in 4%
paraformaldehyde (in 1× PBS) for 10 minutes, followed
by tissue permeabilization in PBST (1× PBS with 0.2% tri-
ton X-100). Non-specific protein binding was blocked by
5% normal goat serum. Following incubation with a pri-
mary antibody against prolactin receptor (raised in sheep,
1:5; Abcam) or non-immune goat serum (negative con-
trol), together with an anti CK-19 antibody (raised in
mouse, 1:50; Vision Biosystems Inc, Norwell, MA), sec-
tions were rinsed with 1× PBS and subsequently incu-
bated with Cy2-conjugated anti-mouse and Cy3-
conjugated anti-sheep antibodies (both diluted at 1:50)
(Jackson Immunochemicals, West Grove, PA). Following

staining, sections were observed either with the light
microscope ECLIPSE E600 (Nikon, Kawasaki, Japan) or
fluorescence microscope DMRXA/HC (Leica, Tokyo,
Japan).

We first performed RT-PCR for the short and long form of
prolactin receptor to determine that cholangiocytes
express the expected molecular weight band for these two
receptor isoforms and GAPDH, the housekeeping gene
[1]. Thereafter, the same primers were used to determine
(by real time PCR) the quantitative expression of short
and long prolactin receptors in total RNA (0.75 μg) from
normal and BDL female cholangiocytes. The primers
(from Integrated DNA Technologies, Coralville, IA) were
designed according to the sequences for the short (NCBI
Genbank Accession No. NM 012630) [23] and long prol-
actin receptor mRNAs (NCBI Genbank Accession No. NM
001034111) [23]. The 5' primer, 5'-CAAATGGGAAG-
CAGTTCCTC-3' (common) was designed to a region that
is homologous to both the short and long forms. The
short form 3' primer, 5'-AGGAAGGGCCAGGTACAGAT-3'
(short), was taken from a sequence region of the short
form mRNA that is non-homologous to long form mRNA.
The long form 3' primer, 5'-GGGGTTCCTCACACTTTTCA-
3' (long), was taken from a sequence region of the long
form mRNA that is non-homologous to the short form
mRNA. The primers for GAPDH (sense 5'-GTGACT-
TCAACAGCAACTCCCATTC-3' and antisense 5'-GTTAT-
GGGGTCTGGGATGGAATTGTG-3', 294 bp) were based
on the rat GAPDH sequence [54]. Standard RT-PCR con-
ditions were used with 1 μg of total mRNA (35 step cycles:
30 sec at 94°C, 30 sec at 59°C and 45 sec at 72°C). The
PCR samples for prolactin receptor short (582 bp) and
long (781 bp) forms were run on agarose gels, the bands
excised and removed from the gel with the Qiaquick Gel
Extraction Kit (Qiagen, Valencia, CA). The purified frag-
ments were sequenced by Davis Sequencing (Davis, CA).

We used the RT2 Real-Time assay from SuperArray (Fred-
erick, MD) to evaluate the expression of the short and
long form of prolactin receptor mRNA in female cholan-
giocytes from normal and BDL rats. RNA was reverse tran-
scribed using the Reaction Ready™ First Strand cDNA
synthesis kit (SuperArray). As described previously [55], 1
μl of the cDNA template was added to 12.5 μl of master
mix, 10.5 μl of DI water and 1 μl of RT2 PCR rat primers
(SuperArray, Frederick, MD) designed specifically for the
messages for short and long prolactin receptor (Integrated
DNA Technologies, Coralville, IA) and GAPDH (SuperAr-
ray). A ΔΔCT analysis was performed using the normal
pooled cholangiocytes as the control sample. Data was
expressed as relative mRNA levels ± SEM of short or long
prolactin receptor to GAPDH ratio (n = 3). To confirm the
presence of one PCR product (by real time PCR analysis),

Real time PCR for prolactin mRNA in total RNA from nor-mal and BDL female cholangiocytesFigure 9
Real time PCR for prolactin mRNA in total RNA from nor-
mal and BDL female cholangiocytes. We demonstrated that: 
(i) female normal cholangiocytes express prolactin mRNA at 
low levels; and (ii) following BDL, prolactin mRNA markedly 
increased in female cholangiocytes. Data are mean ± SEM of 
3 experiments. *p < 0.05 vs. relative expression of prolactin 
receptor of normal female cholangiocytes.
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we performed a dissociation analysis and observed the
presence of only one peak for all primers.

Evaluation of portal inflammation, lobular damage, 
necrosis and cholangiocyte apoptosis and proliferation
We evaluated the effect of in vivo administration of: (i)
NaCl or prolactin to normal rats; and (ii) anti-prolactin
antibody or non-immune serum to BDL rats on portal
inflammation, lobular damage, necrosis and cholangi-
ocyte apoptosis and proliferation. Paraffin embedded
liver sections (5 μm, 3 sections analyzed per group) were
stained with hematoxylin and eosin (H&E) before deter-
mining lobular damage, necrosis and the degree of portal
inflammation as previously described by us [41]. Termi-
nal deoxynucleotidyl transferase biotin-dUTP nick end
labeling (TUNEL) analysis was performed using a com-
mercially available apoptosis detection kit (TACS™ TdT
kit, R&D systems, Minneapolis, MN). Following the
selected staining, sections (5 μm, 3 slides analyzed per
group) were evaluated in coded fashion with the micro-
scope ECLIPSE E600 (Nikon Eclipse, Tokyo, Japan). Two
hundred cells per slide were counted in a coded fashion in
ten non-overlapping fields.

Cholangiocyte proliferation was evaluated by quantitative
determination of the number of PCNA- and CK-19-posi-
tive cholangiocytes in liver sections from the selected
groups of animals. Immunohistochemistry for PCNA or
CK-19 was performed in paraffin-embedded sections (5
μm, 3 slides analyzed for each group) as described [2,5].
Sections were counterstained with hematoxylin and
examined with the ECLIPSE E600 microscope (Nikon
Eclipse, Tokyo, Japan). Over 100 cholangiocytes were
counted in a random, blinded fashion in three different
fields for each section. Data were expressed as number of
PCNA- or CK-19-positive cholangiocytes per each 100
cholangiocytes.

Evaluation of the intracellular signaling pathway by which 
prolactin regulates normal cholangiocyte proliferation
We performed in vitro experiments in normal female
cholangiocytes to demonstrate that: (i) prolactin increases
intracellular Ca2+ levels; and (ii) specific Ca2+-dependent
PKC isoforms play a role in prolactin regulation of
cholangiocyte proliferation. Following purification,
cholangiocytes were incubated for 1 hour at 37°C to
regenerate membrane proteins [1,6,24-26,29,56] dam-
aged by proteolytic enzymes during isolation [52] prior to
loading with Fluo-3AM before [Ca2+]i measurements. A
number of studies have demonstrated that following the
incubation time of 1 hour at 37°C cholangiocytes are
functionally responsive [1,26,29,33,52,56]. [Ca2+]i fluo-
rescence measurements in cholangiocytes were performed
using fluo-3 AM (Molecular Probes, Eugene, Oregon) and
a Fluoroskan Ascent FL (ThermoLabsystems, Helsinki,

Finland) microplate reader equipped with three injectors
[29,57]. Cholangiocytes (4 × 104 per well) were loaded for
1 hour at room temperature with 5 μM of fluo-3 AM in
Tyrode's salt solution (TSS, 137 mM NaCl, 2.7 mM KCl, 1
mM MgCl2, 0.2 mM NaH2PO4, 12 mM NaHCO3 and 5.5
mM glucose) with O.1% Pluronic F-127 (Molecular
Probes, Eugene, Oregon). After washes with TSS, the
loaded cells were added to a 96 well black microplate. The
baseline fluorescence was measured 50 times after 1 sec-
ond at 2-second intervals. TSS alone or prolactin (100
nM) dissolved in buffer was injected sequentially into sep-
arate wells, and the fluorescence intensity was measured
at 538 nm for 3 minutes at 1-second intervals. The excita-
tion wavelength was 485 nm. [Ca2+]i concentration was
calculated as follows: [Ca2+]i = Kd(F-Fmin)/(Fmax-F). Fmax
refers to fluorescence intensity measured after permeabili-
zation of the cells with 1% NP-40. Then, 0.1 M EGTA was
added to chelate Ca2+ and minimum fluorescence inten-
sity (Fmin) was obtained. Ionomycin (10 μM) was utilized
at the end of each calcium determination to ensure
cholangiocyte responsiveness.

Purified normal female cholangiocytes were stimulated
for 90 minutes [25-27] at 37°C with 0.2% BSA (basal) or
prolactin (100 nM) with 0.2% BSA, and analyzed for pro-
tein expression of the phosphorylated form (expressed as
ratio to total protein expression of the corresponding PKC
isoform) of the selected PKC isoform by immunoblots.
The intensity of the bands was determined by scanning
video densitometry using the phospho-imager, Storm
860, Amersham Biosciences (Piscataway, NJ) using the
ImageQuant TLV 2003.02 (Little Chalfont, Buckingham-
shire UK).

Evaluation of expression and secretion of prolactin by 
cholangiocytes
We performed immunohistochemistry (in liver sections)
to evaluate if female cholangiocytes from normal and
BDL rats express the protein for prolactin. Immunohisto-
chemistry for prolactin in liver sections was performed in
the same manner as described for prolactin receptor stain-
ing except using a goat polyclonal anti-prolactin as pri-
mary antibody.

We evaluated by real time PCR the quantitative expression
of prolactin in total RNA (0.75 μg) from purified cholan-
giocytes from normal and BDL female and male rats. Real
time PCR for prolactin was performed as described above
for prolactin receptor with the exception of the primers
that were purchased from SuperArray.

To determine the amount of prolactin secreted, purified
cholangiocytes from normal and BDL female rats were
incubated at 37°C for zero and six hours. Thereafter, cells
were centrifuged at 1,500 rpm for 10 minutes at 4°C, the
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supernatant transferred to a clean tube and stored at -
70°C before analysis for prolactin levels by RIA by com-
mercially available kits (GE Healthcare Bio-Sciences
Corp.).

Statistical analysis
We expressed all data as mean ± SEM. The differences
between groups were analyzed by Student's t-test if two
groups were analyzed or analysis of variance (ANOVA) if
more than two groups were analyzed (assuming p < 0.05
as statistical difference between the analyzed groups).

Abbreviations
BSA = bovine serum albumin; BDL = bile duct ligation;
CK-19 = cytokeratin-19; GAPDH = glyceraldehyde-3-
phosphate dehydrogenase; γ-GT = γ-glutamyl transpepti-
dase; MAPK = mitogen-activated protein kinase; PCNA =
proliferating cellular nuclear antigen; PBC = primary bil-
iary cirrhosis; PKC = protein kinase C.
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