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Abstract

Background: Psychophysically, sweet and bitter have long been considered separate taste
qualities, evident already to the newborn human. The identification of different receptors for sweet
and bitter located on separate cells of the taste buds substantiated this separation. However, this
finding leads to the next question: is bitter and sweet also kept separated in the next link from the
taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C.
aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities
are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste
modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human
tongue, to test our hypothesis that sweet taste is conveyed in S fibers.

Results: We first ascertained that lactisole exerted similar suppression of sweetness in M.
fascicularis, as reported in humans, by recording their preference of sweeteners and non-
sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly
diminished the preference for all sweeteners but had no effect on the intake of non-sweet
compounds or the intake of water. We then recorded the response to the same taste stimuli in 40
single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli
with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S
fibers. It had no effect on the responses to any other stimuli in all other taste fibers.

Conclusion: In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste
sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole
blocks the TIR3 monomer of the sweet taste receptor TIR2/R3, these results present further
support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse
activity in non-S fibers originates from other kinds of receptors. The absence of the effect of
lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet
and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste
receptors.
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Background

A series of elegant studies in genetically modified mice
show that sweet and umami tastes are dependent on T1R-
receptors, that bitter taste is caused by stimulation of T2R
receptors, that these two receptors never are found in the
same taste receptor cell (TRC) and that the TRC deter-
mines the behavioral response [1-7]. One study, for exam-
ple, showed "that mice engineered to express a bitter taste
receptor in 'sweet cells' become strongly attracted to its
cognate bitter tastants, whereas expression of the same
receptor (or even a novel GPCR) in T2R-expressing cells
resulted in mice that are averse to the respective com-
pounds" [5]. The authors concluded that the taste receptor
cells trigger intake behavior [5].

The above-mentioned discovery of a unique set of taste
receptors for the sweet and bitter taste qualities has pro-
vided one answer to the long lasting question on how
sweet or bitter taste is created on the tongue. However, it
has not solved the problem on how the information from
the sweet and bitter receptor bearing taste cells is coded in
the taste nerves?

The first suggestion that each of the human taste qualities
is related to a particular type of taste fiber was based on
recordings of the chorda tympani (CT) and glossopharyn-
geal (NG) nerves of cat [8]. It was in many ways a seminal
study and presented several observations that later studies
confirmed. For example, it identified that different taste
fibers respond to different taste qualities and noted that
the NG nerve contains a larger proportion of mechano-
sensitive fibers than the CT. It also correctly connected a
lack of response to sucrose with the inability of cats to
appreciate sucrose. The reason for this was recently eluci-
dated [9]. The sweet sensitive taste fibers were later discov-
ered in dog [10].

Although the relationship between animal taste fibers and
human taste qualities was strengthened by recordings of
rhesus monkeys [11,12], investigators recording from
non- primates found a weak relationship between human
taste qualities and types of taste fibers. It is likely that the
less than perfect parallel between rodent data and human
taste qualities is the reason why the idea that each taste
quality is conveyed in a unique group of taste fibers is not
universally accepted and was probably one of the reasons
why the across-fiber pattern was presented as an explana-
tion of how tastes are coded [13]. According to this theory,
every taste fiber contributes to every taste sensation [14-
16]. One important consequence of this is that, whereas
textbooks of Physiology detail the different TRCs and
there specific receptors, there is little or nothing men-
tioned on the relationship between the responses from
the taste receptor specific TRCs and the taste fibers, that is,
how taste is coded in peripheral nerves.
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One way to demonstrate if there is a connection between
a taste quality and a specific group of taste fibers (that
does not include any other fiber groups) is to apply a com-
pound that changes or abolishes one of the taste qualities,
and then study the accompanying changes in taste fibers.
Lactisole is such a compound, because in humans it sup-
presses the sweet tastes of sugars and artificial sweeteners
[17], but has no effect on the perception of bitterness,
sourness and saltiness [18,19].

Here we report that lactisole, at concentration used in
humans, in M. fascicularis diminished its preference for
sweet and decreased the response of sweeteners in its S fib-
ers without affecting its behavioral response to non-sweet
compounds or the response in any other taste fiber type.
These data present further support for our hypothesis that
the taste of sweeteners is conveyed by S fibers and that the
sweet taste quality is linked to this particular group of
taste fibers.

Methods

Animals and stimuli

Behavioral and electrophysiological data were obtained
from 5 female M. fascicularis, weighing 2.1-2.4 kg. Table
1 presents the compounds and concentrations used in the
electrophysiological and behavioral experiments. We also
used a second set of the same compounds mixed with
1.25 mM lactisole. These are not listed in Table 1.

Behavioral experiments

The animals were individually housed and had access to
water throughout the behavioral tests. We utilized the
two-bottle method (TBP). First, the animals went through

Table I: Stimuli Used in Experiments

Compound Electrophysiological Behavioral

Ace-K 3.5 mM 1.5 mM

Alitame 0.3 mM

Ascorbic acid 40 mM 40 mM

Aspartame 5mM 0.5 mM

Aspartic acid 50 mM

Caffeine 100 mM

Citric Acid 50 mM 50 mM

Ethanol 3000 mM

Lactisole 1.25 mM 1.25 mM

MSG 70 mM

NaCl 100 mM 500 mM

Saccharin 1.6 mM 0. mM

SC45647 0. mM 0.04 mM

SOA | mM

Stevioside 0.9 mM

Sucrose 300 mM 50 mM

WT Brazzein 0.015 mM

Xylitol 800 mM 120 mM

QHCI 5mM 20 mM
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a training period during which a graded cylinder with
sucrose was left on each cage. When the animals consist-
ently drank from the bottle, we switched to two graded
cylinders on the cage, one cylinder contained 50 ml water,
the other 50 ml of sucrose. During this training period the
animals learnt to sample the cylinders, whose left or right
position was shifted at each occasion. In the next phase
the sucrose was replaced with one of the sweeteners
shown in Table 1. Since macaques like sweet, the animals
rapidly learnt to sample the cylinders and consumed the
sweeteners avidly. The training period was followed by
tests of the effect of lactisole on the intake of these com-
pounds. Then one cylinder contained the sweetener,
while the other contained the same sweetener with 1.25
mM lactisole added. The tests were conducted in duplicate
to verify results. We also compared the intake between
water and 1.25 mM lactisole. These tests were conducted
once a day for 15 minutes.

Data on the effect of lactisole on the intake of non-sweet
compounds were also obtained by comparing the intake
of the same compound with and without lactisole. During
the tests with the non-sweet compounds the bottles were
left on the cage for 1-2 h, as otherwise no solution would
be consumed. The significance of the differences between
the behavioral data obtained with and without lactisole
was determined with t-tests: paired two samples for
means with 90% confidence.

Surgery

The electrophysiological data were obtained from the
right chorda tympani proper (CT) of the same animals as
in the behavioral experiments. The anesthesia was initi-
ated with i.m. ketamine, 50 mg/animal. The monkey was
then intubated and the anesthesia maintained with
halothane (0.7-1.0%). Fluid losses were replaced with
5% dextrose and lactated Ringer's solution through an i.v.
cannula. Body temperature, heart and respiratory rates,
CO, in expired air, and O, in blood were continuously
monitored and recorded. The method to dissect the right
CT has been described several times e.g., [20]. In short, an
incision was made along the mandibular angle between
the rostral lobes of the parotid gland and the mandibular
bone. Then the tissue attached to the mandibular angle
was dissected through and the caudo-medial side of the
pterygoid muscle followed down to its origin at the ptery-
goid plate of the skull to the CT. The nerve was freed from
its junction with the lingual nerve to a point close to the
bulla tympani where it is covered by venous sinuses in
most cases cf. [21].

Stimulation

The tastants were delivered to the tongue with an open
flow system (Taste-O-Matic), controlled by a computer
and custom made software. It delivered the solutions at
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given intervals, over a preset time, under conditions of
constant flow and temperature (33°C) [20]. The stimula-
tion time was chosen to be long enough to elicit a clear
taste response, but as short as possible to obtain as much
data as possible, since one never knows when a single
fiber may fade. Usually 5 sec stimulation was applied.
Between stimulations the tongue was rinsed for 55 to 52
sec with artificial saliva described in [23]. The rinsing time
was chosen to minimize cross-adaptation between stim-
uli. We also never applied two stimuli representing the
same taste quality after each other. It should also be noted
that the switch from rinse to stimulus and back to rinse
was accomplished without any mechanical or tempera-
ture artifacts. As a control we repeated stimulation with
NaCl, sucrose, QHCI and acid more than once during a

cycle.

Electrophysiology; Recording impulses from more than one
single fiber in the same filament

The nerve impulses were recorded with an isolated differ-
ential amplifier and fed into an electrostatic recorder, dis-
played on an oscilloscope and the computer via a data
acquisition card, which digitized the signal at a rate of 50
kHz with a 12 bit analog-to-digital converter. We used
Recorder software (Plexon, Inc.) to set up the data acqui-
sition channels, monitor the signals, control the data
recording process and save the whole raw neural signal
and binary coded stimuli parameters with time marks.
The data were then imported into Offline Sorter (OFS,
Plexon, Inc) and NeuroExplorer (Plexon, Inc) for spike
sorting and further analysis. The sorting method is based
on the feature analysis method, which, using a sophisti-
cated cluster analysis algorithm, separated waveforms
according to their shapes and firing patterns. Our
approach allowed us to obtain responses of 40 CT fibers
in 5 monkeys.

Analysis of the spike trains included building of time his-
tograms, numerical analysis and scoring of the spontane-
ous activity and responses to different compounds. As an
extra control, we built histograms of the neuronal activity
throughout the recording to estimate consistency of the
spike trains and fiber responsiveness. The response meas-
ure usually used in single fiber recordings is numbers of
spikes per second over the stimulation period. The spon-
taneous activity before a stimulation was deducted from
the activity during stimulation.

To detect if there is an organization of the taste fibers, we
used hierarchical cluster analysis (SYSTAT). It is a multi-
variate procedure for detecting natural groupings in data.
The responses to all stimuli were taken into consideration
and the analysis considered each stimulus as an inde-
pendent variable and calculated Pearson correlation coef-
ficients between response profiles. We used correlation
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measures, because they are not influenced by differences
in the absolute values of the responses. The whole matrix
of the correlation coefficients was subjected to the analysis
and we looked for similarities between whole pattern of
response profiles. We used an average linkage method.
The result was presented as a dendrogram.

Responses of fibers belonging to the same cluster were
first evaluated by two-way ANOVA on ranked data. Differ-
ences between cluster's responses with and without lacti-
sole were assessed using t-test. For all tests P < 0.05 were
considered significant.

The four basic stimuli, NaCl, citric acid, QHCI, and
sucrose, were also used to categorize each fiber by its best
stimulus. The breadth of tuning (H) was calculated
according to the formula [22].

50.0
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Results

Behavior

Figure 1 shows the result of the two-bottle preference
(TBP) tests. The left staples in each pair display the average
consumption of the compound without lactisole and the
right ones with lactisole. Asterisks denote significant dif-
ference of intake at 90% confidence limits.

It is evident that lactisole in the sweeteners significantly
lowered the intake, while it had no effect on the non-
sweet compounds. Its largest effect was on the intake of
saccharin and sucrose, followed by about equal effect on
acesulfame-K, xylitol, aspartame and SC 45647. There was
no significant difference in intake between water and 1.25
mM lactisole in water or any of the non-sweet compounds
with and without lactisole. Thus the difference in intake
was only significant for the sweeteners.

45.0 +
40.0 -
35.0 -
30.0 -
25.0 A
20.0 -
15:0¢
10.0 -
5.0 -

0.0 -

M. fascicularis Behavioral Tests-The Effects of Lactisole

F—'
T-'

E Compound without lactisole

OCompound with Lactiscle

=

Ace-K 1.5mM *
Aspartame 0.5mM *
Saccharin 0.1mM *
SC 45467 0.04mM *
Sucrose 50mM *

Figure |

Xylitol 120mM *
Ascorbic acid 40mM
Citric acid 50mM
NaCl 500mM

QHCI 20mM

Water

Results of two-bottle preference tests with one bottle with the tastant and the other with 1.25 mM lactisole
added to the tastant. Each bottle contained 50 ml. It is evident that presence of lactisole made the sweetener less attractive,
but had no significant effect on the intake of the non-sweet compounds. Error bars SE. The asterisks* signifies a significant dif-

ference in intake.

Page 4 of 15

(page number not for citation purposes)



http://www.biomedcentral.com/1472-6793/9/1

BMC Physiology 2009, 9:1

Cy Monkey 2007 Chorda Tympani Nerve

3
Tg8888R2Lo
S z:0eeleel.[-| |
4 E
F2E388885 0 g 8t 8L agpenazE iz tye
EESESEESEEEEEEEcEESE B EEEEEEEEEEEEEEEECE
50000000000 D0OLLOLOLLLOOOLOLOLOLDLOOOODOODOLD DD
[ 31 IR AF B - . @ - .| = - - BEIAEAE ®| = - . - o @
- CAE IE AREE | - .| - - |® - -
O @ oo e 00 000 @ e e - olcloeoM e e|-|0- .- AR IR E ] clel-|o|®
L1 IR I AR AR R X I AR AR AR AR L IR I N I .|le|o|o®le i | =
e 9 L ] e L e @ o8 @ <o e e a|e - e . - @
o0 e e 9@ e e @ @ (eo|0o|0|=|e|e [ s|s s|® o= .| =
L IEIEAE AR ICERE SR AL If JKER 3 - @le|lo|e| el |» - cle(e|-|o| e - .|
L2 2E IR AR AR AR SR AR 3 I IR AR AEEERE IE AR AE AR NI N - AR AERE AR .. .
[ JE AR AR BEAE AF AR AR 2E 2F JERE AR AR AR ARAR AR AN SR L LR AR AR AR . . e e
LA AR AERE X A AR N ML M JEREREAR L A KRR ST K RSN .- e (s@ @ - e |=|=|@®
L 3 I AR AR SRR NIENE AF A 2K 3R 3 eo|o|(=|s|@ | =|-|-]|-|= - L 2E JIEEE AN - - e
00 ©® oo e e @O @ e e slcaae|e -|w]- .| o @ ol oo R I
L A IR AR R AF A AR AR AR AR AR AR IS EEE N E N RN ENE N - ¢ |0 | @~ @ = - L AR J
E AL IR AR 3F A ¢ AR AF A AR AE IR ARAE AR NE SR RK S LIENE] e - e (@ oo | e |e]|-
[ AR J . e L 3 AR AR BE 3F IR AR AR L 3 .= - |- .| -
L IESE Nt IR AR 3E A% 2 A IR AR AR SR BE AR AR AE AR AR A A || == .=
L cle|le|e|@ - | . - - -
o0 - L] L I JE 2K J LAK L |- .
L AE 2 . [ * 9 @ (e @ .|@ = - o
o . @ eoe0 o(® |- .
S|e|s L I N - L == ‘.......14.‘-00 |- -
- " N 2 - = 2 - Z
LI IEE - . - L AR AR N I = |®|-|®|=|- - e -
-l . ] . .| @ = e - == L]
e @ @ -~ - . =efef-f=]" 00 |00 00P-0e0 -0
o= - s o= L3R IERE] e ® |- [ ]
e s | @ 8| |s|8|8|s|s|s|=|@|-|a|=|= - @ e - -......."--‘...
oo - - - - @ 0| e L ] - L ]
@(e | =] |- == S I S O @le|=|- 00000 Gee s s a|l-|os|lole®
5 - - |8 3L ] - | = -
- .| .| = . |- @ e|=|= ®|-|-|= [} . s
- |- = clw|e|m - -l === - -|e|e|@ e e @@ - e = -
2 - - o e [ ]
- S ™ 5 = - sf-|a o -|® e oG

Wwsz'| 'sjosioe

g0 “lonIAX

WWGZ' L+NE 0'9]0SHORT+8S010NG
WEQ'esoiong

WWIGZ' L+WWE 0 'S|0SIoRT+8PISOIA]S
WWwg'0'apisoinals

WWSZ L +WW | 0'8|0SNoeRT+.FISHDS
WWL'0°L¥95v0S

WWGZ' L+NWQ’ | '8|0SIIOET+ULBYIOES
Wwig' | ‘uueyooeg

WWGZ'| +IWWG'sjosnoe+swepedsy
Wwg'swepedsy

WWSZ" | +NWE ('8|0sloB+BWE)Y
W Q'eweyy

WWSZ" | +NWG € ‘9J0SII0B T+ ¥-8WE)NSady
WG y-aweynsay

joueyig

WWSZ L+NW ] ‘8|0SOBT+YOS

W vOoS

WWSZ' |+ WG 8|0SI0e T+ DHD
WWS'IOHD

W ‘ejeozuag wnjuojeusq

W1 0'aulagen

WWSZ' | +AWOS ‘9|0SIIOBT+PIOE 21D
WWQS 'poe 3D

WWGZ' |+ WG ‘9|0sioe ]+ pioe oipedsy
Wwg ‘proe oipedsy

WWSZ' L+ WO ' 8|0SIo.+PIDE DIGIOOSY
WQP PIOE 01GI00SY

WWSZ L+ W0 3j0soe 1+OS I

WWE 0+NWoL dWD+OS
WWOL'OSN

WNWSZ L+ 0'8|0SHIBT+IDEN
WL'0'IOBN

An overview of the response profiles of 40 single CT taste fibers with the use of a topographical method. The
area of the dots represents impulse activity per sec over 5 sec of stimulation. Absence of mark shows that data are missing.

Figure 2

The stimuli were arranged along the x-axis in order of salty, sour, bitter and sweet and along the y-axis in groups: NaCl (N fib-

ers), acids (H fibers), bitter (Q fibers) and sucrose best fibers (S fibers). Every second column showed the response to the

sweetener with lactisole added.

Page 5 of 15

(page number not for citation purposes)



BMC Physiology 2009, 9:1

Electrophysiology

Figure 2 presents an overview of the response in each indi-
vidual fiber with its identity along the vertical axis and
stimulus listed along the horizontal. The stimuli were
arranged along the X axis in order of salty, umami (MSG
and MSG with GMP), sour, bitter and sweet, and the fibers
along the Y axis in groups of NaCl- (N cluster), MSG-, cit-
ric acid- (H cluster), QHCI- (Q cluster) and sucrose-best (S
cluster) as shown in Figure 3. The area of each dot in Fig-
ure 2 represents the impulse activity over the first 5 sec of
stimulation minus spontaneous activity before each stim-
ulation. Absence of a dot shows that data are missing.
Every second column shows the response to the tastant
mixed with 1.25 mM lactisole.

The N cluster consisted of fibers that responded best to
NaCl. Three of the fibers showed also a response to the
acids and two of these fibers were clearly also stimulated
by lactisole and to some extent by the sweeteners. It is
likely that their response to sweetener/lactisole originates
mostly from the effect of lactisole. Their breath of tuning
(H), which gives a numerical value on how specific a
group of fibers is, was 0.64, SD 0.05.

The H cluster consisted of acid-best fibers but five fibers
responded also to the MSG stimuli. Breath of tuning was
0.63, SD 0.1, which indicates that they were about as spe-
cific as the fibers in the previous cluster.

The Q cluster fibers were predominantly responding to
QHCI and to SOA, although acids and three sweeteners,
saccharin, stevioside and acesulfame-K, gave a response in
two fibers. This may by explained by the observation that
the taste of both saccharin and acesulfame-K includes a
bitter component and stevioside has an additional licorice
taste. As a group the Q fibers were slightly more specific
than the previous fibers (H = 0.55, SD 0.05).

The S fibers were more specific than any other (H = 0.4,
SD 0.06) although the dendrogram suggests that these fib-
ers could be composed of three subgroups of which the
upper one consisting of 4 fibers was less specific than the
other two. Although it may not be visible from Figure 2,
in all 19 S fibers the response to sucrose with lactisole was
smaller than to sucrose alone. This is further shown in Fig-
ure 4.

Dendrogram

Figure 3 presents the results of hierarchical cluster analysis
of the 40 single taste fibers. We used the responses to all
stimuli without lactisole. Listed on the left of the dendro-
gram is each fiber's response category and on the right its
identity number. The cluster analysis clearly separated N,

http://www.biomedcentral.com/1472-6793/9/1

H, S and Q clusters. The analysis identified 6 fibers in the
N fiber cluster, 8 H fibers, 6 Q fibers and 19 S fibers.

As shown in Figure 2, fiber CYO7N13E responded better
to citric acid than NaCl. Therefore one might suspect that
it is falsely classified into the N cluster. However, the clus-
ter analysis only calculates the Euclidean distance
between the fibers and because the result is not normal-
ized, this fiber is closer to the N fibers than to any other
group. In addition, the analysis placed another fiber (U
CY0O7M16M) in an additional fifth cluster, which we
labeled M based on its response to MSG alone or mixed
with GMP. It was unique in its singular response to the
stimuli representing the umami taste quality, MSG and
MSG with GMP.

Effects of lactisole

Figure 4 shows the effect of addition of lactisole on the
responses of each of the above clusters. Only data of fibers
tested with the same stimulus with and without lactisole
are included. Thus, the left column in each pair shows the
response to the tastant alone, while the right column dis-
plays the response when lactisole had been added to the
stimulus. Error bars are SE.

The plot shows that addition of lactisole did not signifi-
cantly suppress the response to any stimulus in the N clus-
ter. Lactisole in itself gave a response in the N fibers that
may explain the increase of the response to some of the
tastants with lactisole. In the H and Q cluster lactisole did
not change the responses to any stimuli.

The data from the S cluster shows three features, relevant
to the hypothesis that S fibers convey sweet taste. First, all
S fibers responded to all sweeteners tested. This indicates
that they received input from the same receptor type. Sec-
ond, lactisole suppressed the response of all sweeteners,
although the effect was not significant in acesulfame-K
and stevioside. On the average the responses of the lacti-
sole containing sweeteners was 70%, SD 6, of the
responses of stimulation with the sweetener alone. Third,
lactisole did not suppress the responses of the non-sweet
compounds. Thus, its effect was limited to the responses
of sweeteners in S fibers.

Effect of lactisole on temporal pattern or temporal
intensity

Figure 5 presents two examples of the effect of lactisole on
the temporal pattern or time intensity (TI) of a non-S fiber
(Q fiber CYO7N13F) and an S fiber (CYO7MOB8A). The
impulse activity of each fiber is displayed during 5 sec of
rinsing with artificial saliva, followed by 5 sec of stimula-
tion and then by 10 sec of renewed rinsing with the artifi-
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Q CYOTN13F
Q CYO7TN13C
QCY07022D
QCY07022C
Q CYO7MIEL
Q CYO7N27D
HCYOTM16J
H CYO7TM161

H CYOTM16H
H CY07022E
HCYOT022B
HCYOTM16C
HCYOTN13A
H CYO7N2TE
N CYDO7022H
N CY070220
N CYOTN27G
N CYOTM16K
N CYOTN13E
N CYOTNZ7B
S CYOTN13H
S CYOTN13D
S CYOTMOSA
S CYOTM3B
S CYO7TMO8C
S CYO7TMO8B
S CYOTM18D
S CYOTM16B
S CYOImGr
S CYOTM1BA
S CYOTN27C
S CYOTN2TA
SCYOTM13I

S CYOTM16G
S CYOTM16E
S CYO7022F
S CYOTO22A
S CYOTN13G
S CYOTNZTF
U CYO7TM16M

Results of hierarchical cluster analyses of the response profile of 40 CT taste fibers. Intercluster similarity was
measured with the Pearson correlation coefficient, and the cluster analysis proceeded according to the average linkage

method. Number of response categories of the fibers on the basis of their responses to the basic solutions is listed on the
right. Q, H, N, S and M stand for QHCI-, citric acid-, NaCl, sucrose-, MSG-best fibers.
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Figure 4

Average response profiles of from the top the N cluster, H cluster, Q cluster and S cluster. Error bars are SE.
Dark columns, the tastants without lactisole, open columns, tastants with .25 mM lactisole added. Asterisks denote a differ-
ence between the two columns at a significance level of > 90%. Only the responses to sweeteners in the S fiber cluster were
significantly suppressed by the addition of lactisole.
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It presents two examples of the effect of lactisole on the temporal pattern also called time intensity (TI) of the
responses of a non-S fiber (Q fiber CYO7NI3F) and an S fiber (CY07MO08A). The impulse activity of each fiber is dis-
played during 5 sec of rinsing with artificial saliva, followed by 5 sec of stimulation and then by 10 sec of renewed rinsing with
the artificial saliva. The upper trace in each pair shows the response without lactisole and the lower trace the response with
lactisole added to the stimulus. Only in the S fiber the response to sucrose was suppressed by lactisole.

cial saliva. The upper trace in each pair shows the response
without lactisole and the lower trace the response with
lactisole added to the stimulus.

Several features should be noted. First, while sucrose gave
a large response in the S fiber and QHCI in the Q fiber,
QHCI also elicited a faint response in the S fiber and
sucrose in the Q fiber. Second, only the response to sweet
in the S fiber was diminished by lactisole addition; there
was no effect by lactisole on the response to QHCI or
sucrose in the Q fiber or by lactisole on the response to
QHCl in the S fiber. Third, the suppression of the sucrose
response of the S fiber was visible in the nerve activity dur-
ing the whole stimulation period and not only in part of
it, for example, in the phasic or the tonic part.

Multidimensional scaling

Based on a correlation matrix of the stimuli, we performed
multidimensional scaling for compounds without and
with lactisole. The spatial representation of the similari-

ties among 16 stimuli without lactisole is shown in the
upper diagram of Figure 6. The stress value is 0.047. The
top plot shows that the sweeteners before lactisole formed
a tight group. The lower plot in Figure 6 shows that adding
lactisole to the compounds shrunk the distance between
the sweet group and the non-sweet group. This suggests
that the nerve response to sweet was less different from
that of non-sweet compounds when the sweeteners con-
tained lactisole. The interpretation could be that lactisole
diminished the taste difference between sweet and non-
sweet tastants.

Discussion and conclusion

The results of Figure 1 demonstrated that lactisole sup-
pressed the intake of sweeteners but had no effect on
intake of non-sweet tastants or water. The hierarchical
cluster analysis used objective statistical methods to clas-
sify the taste fibers according to their responses in 5 clus-
ters shown in Figure 3. One cluster consisted of S fibers,
which responded to sweet compounds. Comparison in S-
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Figure 6
Distribution of 16 tastants in a 3-D space resulting from multidimensional scaling. The distribution was calculated

with Pearson correlation coefficient between stimuli across 40 CT fibers. The stress value is 0.047. The top plot shows that the
sweeteners before lactisole formed a tight group further away from the non-sweet stimuli than after lactisole. The results sug-
gest that lactisole diminishes the taste difference between sweeteners and other tastants.
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fibers between the responses of sweet stimuli with and
without lactisole showed that lactisole suppressed the
response to sweeteners but had no effect on other stimuli
or responses in other types of taste fibers (Figure 2 and 4).

In the following these results and conclusions will be dis-
cussed within the context of data from more than 20 ear-
lier studies. We will discuss:

a. Possible influence of diet on proportions of taste fiber types in
two macaques

b. Comparison with earlier data obtained with the sweet taste
modifiers miraculin and gymnemic acid (GA)

c. The parallel between lactisole effects in homo and M. fascic-
ularis

d. The relationship between the T1 receptors, lactisole and S fib-
ers

e. Nerve impulses in S fibers elicited by non-sweet stimuli
f. Relationship between S fibers and cell types in the taste buds

a. Possible influence of diet on proportions of taste
fiber types in two macaques

A comparison between the taste fibers of the related, M.
mulatta, suggests that diet differences likely are reflected in
their gustatory systems. M. mulatta is largely a vegetarian,
while M. fascicularis, the crab eating monkey, also feeds on
littoral species cf. [24]. One prediction, based on diet dif-
ferences, is that, while it is important for M. mulatta to be
able to monitor sodium content in its diet, this may be
less important for the M. fascicularis, because lack of
sodium is not a problem for a species living along the sea.
This suggestion is supported by the small proportion of N
fibers in M. fascicularis, (15%), as compared to the 40% in
M. mulatta. The 15% Na fibers in M. fascicularis parallels
the 20%, based on analysis of 14 stimuli in 25 fibers, pre-
sented by Sato in the same species [25]. Otherwise there
were no major differences in fiber proportions, specificity
or maximum response (measured as nerve impulse fre-
quency) between the two macaques.

b. Comparison with earlier data obtained with the
sweet taste modifiers miraculin and GA

In humans miraculin adds sweetness to all acids and GA
blocks all kind of sweetness. We have used miraculin and
GA to resolve how taste is coded in peripheral nerves,
because, if these compounds exert the same taste effects in
our animal models, i.e., add sweet taste to acids after mira-
culin or block sweetness after GA, these effects must be
reflected in taste nerve responses to sweet. In the follow-
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ing we summarize briefly the results of several primate
studies.

The first study with miraculin was done in Cercopithecus
aethiops, an Old-World monkey [26]. The study showed
that miraculin almost doubled the response to 0.03 M cit-
ric acid in recordings from the whole CT. The effects on
the nerve paralleled the effects recorded from the whole
human CT nerve [26]. Similar results, together with more
than doubled intake of acids, were obtained in later stud-
ies of other primates: M. fascicularis, C. aethiops [27],
Saguinus m. tamarin [28], a New-World monkey, as well as
in M. mulatta [29]. This suggested that single fiber record-
ings from non-human primates could shed light on how
sweetness is coded in human taste nerves.

The first single fiber study of rhesus monkey, M. mulatta,
using miraculin showed that fibers responding to sweet,
responded also to acids after miraculin [30]. Otherwise
there was no difference in the nerve responses recorded
before and after miraculin. After miraculin the monkeys
more than doubled their intake of acids, which paralleled
the results of adding sucrose to the acids. The study con-
cluded that the increased liking of sour was caused by a
response in $ fibers, not by a suppression of the response
to sour compounds in H fibers [30]. This finding corrob-
orates human sensory data which show that there is no
change of intensity of sourness of acids, only an increase
of sweetness [31].

Corroborative data were obtained in another primate, the
marmoset, Callithrix j. jacchus. Thus, following miraculin
application to the tongue, the marmosets consumed acids
more readily than before and S fibers responded to acids,
although they showed no response to acids before. Once
again, miraculin exerted no effects on the responses in
non-sweet fibers.

As mentioned above, GA blocks sweet taste on the human
tongue [32-34]. In human CT nerves GA abolished or
diminished the response to sweeteners but not the
response to non-sweet compounds [35,36]. Unfortu-
nately, GA does not suppress sweet taste in monkeys as
well as in all non-primates tested, although a number of
earlier studies have suggested this [27]. On the other
hand, in the phylogentically to human closely related
chimpanzee, CT nerve recordings showed that GA abol-
ished the response to sweet in S fibers, while it had no
effect on the responses to any stimulus in non-S fibers.
Behavioral data paralleled and supported the electrophys-
iology [37-39]. When the effect of miraculin in combina-
tion with GA was tested on a few chimpanzee S fibers, the
miraculin-induced S fiber response to acids was abol-
ished. This parallels the observation in humans that GA
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removes the sweetness induced by miraculin on sour
compounds.

Finally, S fiber responses have and can be used to assess
sweetness of new compounds, as for example, brazzein, a
sweet fruit protein, in which we substituted of one or
more of its amino acids. Thus, we have used monkey S
fiber recordings to determine changes of sweetness of 25
mutants of brazzein. The results showed a high positive
correlation(r = 0.78) with the results of assessment of
sweetness of the same brazzein mutants by a human sen-
sory panel [40,41].

In summary, the results with taste modifiers and sweeten-
ers link the sweet taste quality to fibers of the S-cluster in
all non-human primates tested. These results all support
the hypothesis that activity in S fibers translates into
hedonic positive responses and creates a taste that with
human terminology is best described as sweet [42-46].

c. Parallel between lactisole results in homo and M.
fascicularis

Here we used the same lactisole concentration as the one
that suppressed sweet taste in humans [17,19]. This shows
that lactisole acts within the same concentration range in
M. fascicularis as in homo.

Furthermore, the amount of suppression of each sweet-
ener paralleled in human and in the behavior of M. fascic-
ularis. The behavioral data in Figure 1 showed most
suppression of saccharin and sucrose, while aspartame
and acesulfame-K occupied the middle ground followed
by SC 45647. In our taste panel the intensity of saccharin
and sucrose was also most suppressed. Aspartame and
brazzein lost about 50% of their sweetness and SC45647
was the least suppressed among the sweeteners we tested
(data not shown). This order is the same as reported by
Schiffman [17].

Finally, in M. fascicularis and humans lactisole does not
significantly affect the intensity of salty, sour and bitter
compounds [19]. The responses in the N, H and Q clusters
of Figure 2 and Figure 4 support this conclusion. This sug-
gests that lactisole affects the sense of taste of M. fascicula-
ris and human in a similar way.

d. The relationship between the T | receptors, lactisole
and S fibers

Figure 2 and 4 show that lactisole decreased the responses
to sweeteners in S fibers. The literature suggests that lacti-
sole docks to a binding pocket within the transmembrane
domain (TMD) in the human T1R3 receptor [47-50]. The
docking interferes with the response to sweeteners.
According to Li, this TMD region, consisting of 10 resi-
dues, is the same in homo and apes, but A733 is replaced
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with V733 in rhesus monkey and baboon [51]. The
change is probably the same in M. fascicularis and is appar-
ently not preventing the effect of lactisole.

At this point it is not known if and how lactisole affects
sweet taste in New-World monkeys, but the difference
between human and New-World monkeys' TMDs is larger
than between Old-World monkeys and humans as sug-
gested by data from the squirrel monkey in which T735
and 1739 replace A735 and T739 [51]. It is presently not
known how far into the evolutionary tree the effects of lac-
tisole reach, but it does not affect sweet taste of rats
[52,53]. The elucidation of this might give further infor-
mation on the nature of the T1R receptors.

The continuous trace of impulses in Figure 5 demon-
strates that there was no delay of the suppression by lacti-
sole on the S fiber response to sweet. This suggests that the
inhibition a lactisole on the TMD region occurs basically
at the same time as the binding of the ligand to its site on
the extra cellular part of the receptor. In some experiments
we used brazzein and recorded a strong suppression of S
fiber responses. However, we also noticed that after the
lactisole mixture was rinsed away, a response was
recorded. We interpret this as the result of a stronger bind-
ing to the receptor by brazzein than by lactisole. This
interpretation is supported by the psychophysical obser-
vation that the sweetness of brazzein lingers also when the
tongue is rinsed with water.

To summarize, our data suggest that the suppression of
sweet is the result of lactisole interfering with the TMD of
the M. fascicularis TIR3 and that the sensory effect is con-
veyed in S fibers.

e. Nerve impulses in S fibers elicited by non-sweet
stimuli

Some S fibers respond to non-sweet compounds,
although the response is less than to sweet. Figure 2 and 4
show this. If these responses originated from non-sweet
receptors, there should be no suppression by lactisole,
because lactisole blocks only the sweet receptor T1R3. Fig-
ure 4 confirms this conclusion. Consequently, these
impulses are not caused by stimulation of sweet receptors.
On the other hand, these responses occurred in S fibers. If
the impulse frequency is below sensory threshold it will
give no taste, if above, it should. Then they should,
according to our theory, give rise to a sweet taste. This
presents an apparent contradiction. In the following we
present possible explanations.

It is well known that the cells of the taste buds are rapidly
turned-over, e.g., [54]. One consequence of the continu-
ous turnover is a need to reestablish connections between
S fibers and T1R bearing TRCs. Thus, it is not improbable
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that an S fiber in search for the appropriate cells to syn-
apse with, forms temporary connections with non-sweet
TRCs, because initial hyperinnervation, followed by
degeneration until normal connections are established, is
a general feature in generation and regeneration. In the
TB, mismatching connections degenerate, while the
"right" ones remain, but before this happens, an S fiber
could respond to non-sweet stimuli.

It is also possible that the compounds that elicited these
responses have a sweet side taste to monkeys that is absent
to humans. This is supported by the finding that taste fib-
ers of chimpanzee are significantly more narrowly tuned
to human taste qualities than those of monkey. The fact is
that there are almost no S fibers responses to non-sweet
stimuli in chimpanzee CT fibers and therefore most likely
also in human taste nerves [38,39,55,56]. Thus these non-
sweet compounds may have a hedonically positive side
taste to M. fascicularis that it does not share with chimpan-
zee or human.

f. Relationship between S fibers and cell types in the
taste buds

Besides undifferentiated peripheral cells and basal cells, it
is generally thought that the mammalian taste bud con-
tains three major types of cells [57-59]. The largest group
consists of glia cells, labeled type I cells by most investiga-
tors. They show no synaptic structures. The second type,
labeled type II cells, is the TRCs. Some of these bear either
T1R or T2R receptors and contain many of the constitu-
ents of the intracellular transduction components, such as
gustducin and could be expected to synapse with nerves.
However, they show no or few synapses with nerve end-
ings in monkey [60] as well as in mouse and rat
[57,58,61-70].

It seems that the "missing" presynaptic-like structures
instead are present on a third cell type, type III. Some
investigators claim that type III cells serve as the interme-
diate cells and receive input from more than one type II
cell [71]. Thus, based on recordings from tongue slices
with taste buds or patch clamp recordings of individual
taste bud cells, they report that type III cells responded to
many taste qualities [72,73]. If this is the only manner
that taste fibers are activated, the results should be that S
fibers respond to several taste qualities,

However, we and other investigators have recent data that
suggest that TRCs directly can activate taste fibers, by-pass-
ing the type Il link [74,75]. We found in mice with a com-
bination of genetic, morphological, behavioral and in
vivo and in vitro electrophysiological techniques that ade-
nosine 5'-triphosphate (ATP) released from the TBs could
serve as a transmitter in the TB and that knocking out the
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receptors for ATP, the ionotropic purinergic receptors,
(P2X, and P2X,), eliminated the taste nerve response and
strongly decreased the behavioral response to sweet and
bitter [74].

Later Yoshida et al. added more support to this mecha-
nism, when they identified gustducin in the TRCs contain-
ing ATP [75]. (Gustducin is not present in type III cells).
Further, they showed that the amount of ATP increased in
a firing rate-dependent manner to stimulation with sac-
charin, quinine or glutamate. These findings suggest that
the TRCs directly can activate taste nerves without involv-
ing any type III cells. This would allow a direct coupling
between the T1R receptor bearing type II cells and S fibers.

Furthermore, a recent study in mice shows that breadth of
tuning between CT fibers and fungiform TRCs was not sig-
nificantly different [76]. This would not have been the
case if information from several types of taste receptors
converged on the same CT fiber, because then the breath
of tuning for fibers would differ from that of taste cells.
The only way to explain this is a more or less a one-to-one
connection in regard to taste quality between TRCs and
taste fibers.

Further support that taste qualities are conveyed sepa-
rately, is offered by a recent study, which showed that neu-
rons in the solitary tracts (NTS) respond selectively to
bitter [77]. Even more interesting is that some of these
NTS cells responded, not only uniquely to the bitter taste
quality but also, within the bitter taste quality, to only one
of the bitter stimuli used [77].

The above, does not refute an important role of the type
111 cells, because there are other neuropeptides and trans-
mitters within taste buds and the mechanisms observed
by [72,73] may play a modulatory role or may be crucial
for intragemmal communication among the different
types of cells in the TB as suggested by, for example, [78-
81].

In summary, the data presented here suggest that the S
and Q fiber clusters give rise to the sweet and bitter taste
qualities respectively. Our data in regard to sweet is partic-
ularly strong and has withstood repeated tests in many
species.
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