Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs--mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11:592–605.
Article
CAS
Google Scholar
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008;7:489–503.
Article
CAS
Google Scholar
Iso T, Maeda K, Hanaoka H, Suga T, Goto K, et al. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler Thromb Vasc Biol. 2013;33:2549–57.
Article
CAS
Google Scholar
Elmasri H, Karaaslan C, Teper Y, Ghelfi E, Weng M, et al. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J. 2009;23:3865–73.
Article
CAS
Google Scholar
Masouye I, Hagens G, Van Kuppevelt TH, Madsen P, Saurat JH, et al. Endothelial cells of the human microvasculature express epidermal fatty acid-binding protein. Circ Res. 1997;81:297–303.
Article
CAS
Google Scholar
Furuhashi M, Fucho R, Gorgun CZ, Tuncman G, Cao H, et al. Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest. 2008;118:2640–50.
CAS
PubMed
PubMed Central
Google Scholar
Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, et al. Adipocyte/MACROPHAGE fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab. 2005;1:107–19.
Article
CAS
Google Scholar
Boord JB, Maeda K, Makowski L, Babaev VR, Fazio S, et al. Combined adipocyte-macrophage fatty acid-binding protein deficiency improves metabolism, atherosclerosis, and survival in apolipoprotein E-deficient mice. Circulation. 2004;110:1492–8.
Article
CAS
Google Scholar
Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR, et al. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 2013;17:768–78.
Article
Google Scholar
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44.
Article
CAS
Google Scholar
Coppiello G, Collantes M, Sirerol-Piquer MS, Vandenwijngaert S, Schoors S, et al. Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake. Circulation. 2015;131:815–26.
Article
CAS
Google Scholar
Goto K, Iso T, Hanaoka H, Yamaguchi A, Suga T, et al. Peroxisome proliferator-activated receptor-gamma in capillary endothelia promotes fatty acid uptake by heart during long-term fasting. J Am Heart Assoc. 2013;2:e004861.
Article
Google Scholar
Kanda T, Brown JD, Orasanu G, Vogel S, Gonzalez FJ, et al. PPARgamma in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest. 2009;119:110–24.
CAS
PubMed
Google Scholar
Marray RK, editor. Harper's illustrated biochemistry. 28th ed. New York: McGraw-Hill Companies, Inc.; 2009.
Google Scholar
Salway JG, editor. Metabolism at a glance. 3rd ed. Oxford: Blackwell Publishing; 2004.
Google Scholar
Syamsunarno MR, Iso T, Hanaoka H, Yamaguchi A, Obokata M, et al. A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting. PLoS One. 2013;8:e79386.
Article
Google Scholar
Syamsunarno MR, Iso T, Yamaguchi A, Hanaoka H, Putri M, et al. Fatty acid binding protein 4 and 5 play a crucial role in thermogenesis under the conditions of fasting and cold stress. PLoS One. 2014;9:e90825.
Article
Google Scholar
Yoshida Y, Jain SS, McFarlan JT, Snook LA, Chabowski A, et al. Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis. J Physiol. 2013;591:4415–26.
Article
CAS
Google Scholar
Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84.
Article
CAS
Google Scholar
Iso T, Haruyama H, Sunaga H, Matsui H, Matsui M, et al. CD36 is indispensable for nutrient homeostasis and endurance exercise capacity during prolonged fasting. Physiol Rep. 2018;6:e13884.
Article
Google Scholar
Haramizu S, Nagasawa A, Ota N, Hase T, Tokimitsu I, et al. Different contribution of muscle and liver lipid metabolism to endurance capacity and obesity susceptibility of mice. J Appl Physiol. 2009;106:871–9.
Article
CAS
Google Scholar
Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One. 2012;7:e35273.
Article
CAS
Google Scholar
Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017;25:262–84.
Article
CAS
Google Scholar
Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of ketone body metabolism and the role of PPARalpha. Int J Mol Sci. 2016;17:e2093.
Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004;2:e294.
Article
Google Scholar
Hajri T, Han XX, Bonen A, Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest. 2002;109:1381–9.
Article
CAS
Google Scholar
Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem. 2000;275:32523–9.
Article
CAS
Google Scholar
Manio MCC, Matsumura S, Masuda D, Inoue K. CD36 is essential for endurance improvement, changes in whole-body metabolism, and efficient PPAR-related transcriptional responses in the muscle with exercise training. Physiol Rep. 2017;5:e13282.
Fujitani M, Matsumura S, Masuda D, Yamashita S, Fushiki T, et al. CD36, but not GPR120, is required for efficient fatty acid utilization during endurance exercise. Biosci Biotechnol Biochem. 2014;78:1871–8.
Article
CAS
Google Scholar
McFarlan JT, Yoshida Y, Jain SS, Han XX, Snook LA, et al. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation. J Biol Chem. 2012;287:23502–16.
Article
CAS
Google Scholar
Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys. 1993;265:E380–91.
CAS
Google Scholar
Putri M, Syamsunarno MR, Iso T, Yamaguchi A, Hanaoka H, et al. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress. Biochem Biophys Res Commun. 2015;457:520–5.
Article
CAS
Google Scholar
Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64.
Article
CAS
Google Scholar
Nehra V, Allen JM, Mailing LJ, Kashyap PC, Woods JA. Gut microbiota: modulation of host physiology in obesity. Physiology (Bethesda). 2016;31:327–35.
CAS
Google Scholar
Umbarawan Y, Syamsunarno M, Koitabashi N, Yamaguchi A, Hanaoka H, et al. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice. Cardiovasc Res. 2018;114:1132–44.
Article
Google Scholar
Umbarawan Y, Syamsunarno M, Obinata H, Yamaguchi A, Sunaga H, et al. Robust suppression of cardiac energy catabolism with marked accumulation of energy substrates during lipopolysaccharide-induced cardiac dysfunction in mice. Metabolism. 2017;77:47–57.
Article
CAS
Google Scholar