Nelsen CJ, Rickheim DG, Tucker MM, Hansen LK, Albrecht JH: Evidence that cyclin D1 mediates both growth and proliferation downstream of TOR in hepatocytes. J Biol Chem. 2003, 278: 3656-3663. 10.1074/jbc.M209374200.
Article
PubMed
Google Scholar
Nelsen CJ, Rickheim DG, Tucker MM, McKenzie TJ, Hansen LK, Pestell RG, Albrecht JH: Amino acids regulate hepatocyte proliferation through modulation of cyclin D1 expression. J Biol Chem. 2003, 278: 25853-25858. 10.1074/jbc.M302360200.
Article
PubMed
Google Scholar
Buse MG, Reid SS: Leucine. A possible regulator of protein turnover in muscle. J Clin Invest. 1975, 56: 1250-1261. 10.1172/JCI108201.
Article
PubMed
PubMed Central
Google Scholar
Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB: Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J Appl Physiol. 2009, 106: 1730-1739. 10.1152/japplphysiol.90395.2008.
Article
PubMed
PubMed Central
Google Scholar
Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ: Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. Faseb J. 2005, 19: 422-424.
PubMed
Google Scholar
Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ: Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010
Google Scholar
Greiwe JS, Kwon G, McDaniel ML, Semenkovich CF: Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle. Am J Physiol Endocrinol Metab. 2001, 281: E466-471.
PubMed
Google Scholar
Liu Z, Jahn LA, Wei L, Long W, Barrett EJ: Amino acids stimulate translation initiation and protein synthesis through an Akt-independent pathway in human skeletal muscle. J Clin Endocrinol Metab. 2002, 87: 5553-5558. 10.1210/jc.2002-020424.
Article
PubMed
Google Scholar
Kimball SR, Shantz LM, Horetsky RL, Jefferson LS: Leucine Regulates Translation of Specific mRNAs in L6 Myoblasts through mTOR-mediated Changes in Availability of eIF4E and Phosphorylation of Ribosomal Protein S6. J Biol Chem. 1999, 274: 11647-11652. 10.1074/jbc.274.17.11647.
Article
PubMed
Google Scholar
Anthony JC, Anthony TG, Kimball SR, Jefferson LS: Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001, 131: 856S-860S.
PubMed
Google Scholar
Hara K, Maruki Y, Long X, Yoshino K-i, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K: Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action. Cell. 2002, 110: 177-189. 10.1016/S0092-8674(02)00833-4.
Article
PubMed
Google Scholar
Avruch J, Belham C, Weng Q, Hara K, Yonezawa K: The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. Prog Mol Subcell Biol. 2001, 26: 115-154.
Article
PubMed
Google Scholar
Kozak M, Shatkin AJ: Identification of features in 5' terminal fragments from reovirus mRNA which are important for ribosome binding. Cell. 1978, 13: 201-212. 10.1016/0092-8674(78)90150-2.
Article
PubMed
Google Scholar
Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ: Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids. 2010, 38: 1533-1539. 10.1007/s00726-009-0377-x.
Article
PubMed
Google Scholar
Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB: Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab. 2008, 294: E392-400.
Article
PubMed
PubMed Central
Google Scholar
Drummond MJ, Rasmussen BB: Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care. 2008, 11: 222-226. 10.1097/MCO.0b013e3282fa17fb.
Article
PubMed
Google Scholar
Deldicque L, Sanchez Canedo C, Horman S, De Potter I, Bertrand L, Hue L, Francaux M: Antagonistic effects of leucine and glutamine on the mTOR pathway in myogenic C2C12 cells. Amino Acids. 2008, 35: 147-155. 10.1007/s00726-007-0607-z.
Article
PubMed
Google Scholar
Glynn E, Fry C, Drummond M, Timmerman K, Dhanani S, Volpi E, Rasmussen B: Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J Nutr. 2010, 140: 1970-1976. 10.3945/jn.110.127647.
Article
PubMed
PubMed Central
Google Scholar
Ishizuka Y, Kakiya N, Nawa H, Takei N: Leucine induces phosphorylation and activation of p70S6K in cortical neurons via the system L amino acid transporter. J Neurochem. 2008, 106: 934-942. 10.1111/j.1471-4159.2008.05438.x.
Article
PubMed
Google Scholar
Kimball SR, Shantz LM, Horetsky RL, Jefferson LS: Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem. 1999, 274: 11647-11652. 10.1074/jbc.274.17.11647.
Article
PubMed
Google Scholar
Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, Garlick PJ: The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009, 139: 1103-1109. 10.3945/jn.108.103853.
Article
PubMed
Google Scholar
Shah OJ, Antonetti DA, Kimball SR, Jefferson LS: Leucine, glutamine, and tyrosine reciprocally modulate the translation initiation factors eIF4F and eIF2B in perfused rat liver. J Biol Chem. 1999, 274: 36168-36175. 10.1074/jbc.274.51.36168.
Article
PubMed
Google Scholar
Iraqui I, Vissers S, Bernard F, de Craene JO, Boles E, Urrestarazu A, Andre B: Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol. 1999, 19: 989-1001.
Article
PubMed
PubMed Central
Google Scholar
Ferenci T: Regulation by nutrient limitation. Curr Opin Microbiol. 1999, 2: 208-213. 10.1016/S1369-5274(99)80036-8.
Article
PubMed
Google Scholar
Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF: A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J. 2007, 403: 13-20. 10.1042/BJ20061881.
Article
PubMed
PubMed Central
Google Scholar
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008, 320: 1496-1501. 10.1126/science.1157535.
Article
PubMed
PubMed Central
Google Scholar
Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer J, Matt F, Bos JL, Zwartkruis FJ, Thomas G: Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA. 2005, 102: 14238-14243. 10.1073/pnas.0506925102.
Article
PubMed
PubMed Central
Google Scholar
MacKenzie MG, Hamilton DL, Murray JT, Taylor PM, Baar K: mVps34 is activated following high-resistance contractions. J Physiol. 2009, 587: 253-260. 10.1113/jphysiol.2008.159830.
Article
PubMed
PubMed Central
Google Scholar
Byfield MP, Murray JT, Backer JM: hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem. 2005, 280: 33076-33082. 10.1074/jbc.M507201200.
Article
PubMed
Google Scholar
Bodoy S, Martin L, Zorzano A, Palacin M, Estevez R, Bertran J: Identification of LAT4, a novel amino acid transporter with system L activity. J Biol Chem. 2005, 280: 12002-12011. 10.1074/jbc.M408638200.
Article
PubMed
Google Scholar
Riggs TR, McKirahan KJ: Action of insulin on transport of L-alanine into rat diaphragm in vitro. Evidence that the hormone affects only one neutral amino acid transport system. J Biol Chem. 1973, 248: 6450-6455.
PubMed
Google Scholar
Zorzano A, Balon TW, Goodman MN, Ruderman NB: Insulin and exercise stimulate muscle alpha-aminoisobutyric acid transport by a Na+-K+-ATPase independent pathway. Biochem Biophys Res Commun. 1986, 134: 1342-1349. 10.1016/0006-291X(86)90397-9.
Article
PubMed
Google Scholar
Kashiwagi H, Yamazaki K, Takekuma Y, Ganapathy V, Sugawara M: Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation. Amino Acids. 2008
Google Scholar
McDowell HE, Christie GR, Stenhouse G, Hundal HS: Leucine activates system A amino acid transport in L6 rat skeletal muscle cells. Am J Physiol. 1995, 269: C1287-1294.
PubMed
Google Scholar
Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H: Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001, 1514: 291-302. 10.1016/S0005-2736(01)00384-4.
Article
PubMed
Google Scholar
Kobayashi K, Ohnishi A, Promsuk J, Shimizu S, Kanai Y, Shiokawa Y, Nagane M: Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery. 2008, 62: 493-503. 10.1227/01.neu.0000316018.51292.19. discussion 503-494
Article
PubMed
Google Scholar
Gaster M, Kristensen SR, Beck-Nielsen H, Schroder HD: A cellular model system of differentiated human myotubes. APMIS. 2001, 109: 735-744. 10.1034/j.1600-0463.2001.d01-140.x.
Article
PubMed
Google Scholar
Wang X, Campbell LE, Miller CM, Proud CG: Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J. 1998, 334 (Pt 1): 261-267.
Article
PubMed
PubMed Central
Google Scholar
Xu G, Kwon G, Marshall CA, Lin TA, Lawrence JC, McDaniel ML: Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem. 1998, 273: 28178-28184. 10.1074/jbc.273.43.28178.
Article
PubMed
Google Scholar
Krause U, Bertrand L, Maisin L, Rosa M, Hue L: Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur J Biochem. 2002, 269: 3742-3750. 10.1046/j.1432-1033.2002.03069.x.
Article
PubMed
Google Scholar
Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR: Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998, 101: 1519-1529. 10.1172/JCI1326.
Article
PubMed
PubMed Central
Google Scholar
Dennis MD, Baum JI, Kimball SR, Jefferson LS: Mechanisms involved in the coordinate regulation of mTORC1 by insulin and amino acids. J Biol Chem. 2011, 286: 8287-8296. 10.1074/jbc.M110.209171.
Article
PubMed
PubMed Central
Google Scholar
Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60: 3504-3513.
PubMed
Google Scholar
Bolster DR, Vary TC, Kimball SR, Jefferson LS: Leucine regulates translation initiation in rat skeletal muscle via enhanced eIF4G phosphorylation. J Nutr. 2004, 134: 1704-1710.
PubMed
Google Scholar
Hillier T, Long W, Jahn L, Wei L, Barrett EJ: Physiological hyperinsulinemia stimulates p70(S6k) phosphorylation in human skeletal muscle. J Clin Endocrinol Metab. 2000, 85: 4900-4904. 10.1210/jc.85.12.4900.
PubMed
Google Scholar
Kimball SR, Vary TC, Jefferson LS: Regulation of protein synthesis by insulin. Annu Rev Physiol. 1994, 56: 321-348. 10.1146/annurev.ph.56.030194.001541.
Article
PubMed
Google Scholar
McGivan JD, Pastor-Anglada M: Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994, 299 (Pt 2): 321-334.
Article
PubMed
PubMed Central
Google Scholar
Kashiwagi H, Yamazaki K, Takekuma Y, Ganapathy V, Sugawara M: Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation. Amino Acids. 2009, 36: 219-230. 10.1007/s00726-008-0050-9.
Article
PubMed
Google Scholar
Kletzien RF, Pariza MW, Becker JE, Potter VR, Butcher FR: Induction of amino acid transport in primary cultures of adult rat liver parenchymal cells by insulin. J Biol Chem. 1976, 251: 3014-3020.
PubMed
Google Scholar
Su TZ, Wang M, Syu LJ, Saltiel AR, Oxender DL: Regulation of system A amino acid transport in 3T3-L1 adipocytes by insulin. J Biol Chem. 1998, 273: 3173-3179. 10.1074/jbc.273.6.3173.
Article
PubMed
Google Scholar
Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H: Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998, 273: 23629-23632. 10.1074/jbc.273.37.23629.
Article
PubMed
Google Scholar
Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y: Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999, 274: 19745-19751. 10.1074/jbc.274.28.19745.
Article
PubMed
Google Scholar
Caldow MK, Steinberg GR, Cameron-Smith D: Impact of SOCS3 overexpression on human skeletal muscle development in vitro. Cytokine. In Press, Corrected Proof
Evans WJ, Phinney SD, Young VR: Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc. 1982, 14: 101-102.
PubMed
Google Scholar
Rando TA, Blau HM: Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol. 1994, 125: 1275-1287. 10.1083/jcb.125.6.1275.
Article
PubMed
Google Scholar