Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol. 2006;576(Pt 1):11–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wing KG, Harris JD, Stover A, Brouillette JH. Effects of changes in arterial oxygen and carbon dioxide upon cochlear microphonics. J Comp Physiol Psychol. 1953;46(5):352–7.
Article
CAS
PubMed
Google Scholar
Heigl F, Hettich R, Suckfuell M, Luebbers CW, Osterkorn D, Osterkorn K, Canis M. Fibrinogen/LDL apheresis as successful second-line treatment of sudden hearing loss: a retrospective study on 217 patients. Atheroscler Suppl. 2009;10(5):95–101.
Article
CAS
PubMed
Google Scholar
Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, Liu X, Nuttall AL. Disorders of cochlear blood flow. Brain Res Brain Res Rev. 2003;43(1):17–28.
Article
PubMed
Google Scholar
Nishimura T, Nario K, Hosoi H. Effects of intravenous administration of prostaglandin E1 and lipo-prostaglandin E1 on cochlear blood flow in guinea pigs. Eur Arch Otorhinolaryngol. 2002;259(5):253–6.
Article
PubMed
Google Scholar
Scherer EQ, Yang J, Canis M, Reimann K, Ivanov K, Diehl CD, Backx PH, Wier WG, Strieth S, Wangemann P, Voigtlaender-Bolz J, Lidington D, Bolz SS. Tumor necrosis factor-alpha enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke. 2010;41(11):2618–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S. TNF-alpha inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol. 2013;52(8):545–52.
Article
PubMed
Google Scholar
Ihler F, Bertlich M, Sharaf K, Strieth S, Strupp M, Canis M. Betahistine exerts a dose-dependent effect on cochlear stria vascularis blood flow in guinea pigs in vivo. PLoS One. 2012;7(6):e39086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruber DD, Dang H, Shimozono M, Scofield MA, Wangemann P. Alpha1A-adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro. Hear Res. 1998;119(1–2):113–24.
Article
CAS
PubMed
Google Scholar
Wangemann P, Gruber DD. The isolated in vitro perfused spiral modiolar artery: pressure dependence of vasoconstriction. Hear Res. 1998;115(1–2):113–8.
Article
CAS
PubMed
Google Scholar
Wangemann P, Cohn ES, Gruber DD, Gratton MA. Ca2+ -dependence and nifedipine-sensitivity of vascular tone and contractility in the isolated superfused spiral modiolar artery in vitro. Hear Res. 1998;118(1-2):90–100.
Article
CAS
PubMed
Google Scholar
Reimann K, Krishnamoorthy G, Wier WG, Wangemann P. Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea. PLoS One. 2011;6(9):e25659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu T, Dai M, Shi XR, Jiang ZG, Nuttall AL. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter. Am J Physiol Heart Circ Physiol. 2011;301(1):H69–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai M, Yang Y, Shi X. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS. Am J Physiol Heart Circ Physiol. 2011;301(4):H1248–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995;270(5236):633–7.
Article
CAS
PubMed
Google Scholar
Cheng H, Lederer WJ. Calcium sparks. Physiol Rev. 2008;88(4):1491–545.
Article
CAS
PubMed
Google Scholar
Jaggar JH, Wellman GC, Heppner TJ, Porter VA, Perez GJ, Gollasch M, Kleppisch T, Rubart M, Stevenson AS, Lederer WJ, et al. Ca2+ channels, ryanodine receptors and Ca2+-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand. 1998;164(4):577–87.
Article
CAS
PubMed
Google Scholar
Knot HJ, Standen NB, Nelson MT. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+ -dependent K+ channels. J Physiol. 1998;508(Pt 1):211–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez GJ, Bonev AD, Patlak JB, Nelson MT. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J Gen Physiol. 1999;113(2):229–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268(4 Pt 1):C799–822.
CAS
PubMed
Google Scholar
Krishnamoorthy G, Sonkusare SK, Heppner TJ, Nelson MT. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol. 2014;306(7):H981–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishnamoorthy G, Regehr K, Berge S, Scherer EQ, Wangemann P. Calcium sparks in the intact gerbil spiral modiolar artery. BMC Physiol. 2011;11:15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reimann K, Krishnamoorthy G, Wangemann P. NOS inhibition enhances myogenic tone by increasing rho-kinase mediated Ca2+ sensitivity in the male but not the female gerbil spiral modiolar artery. PLoS One. 2013;8(1):e53655.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kur J, Bankhead P, Scholfield CN, Curtis TM, McGeown JG. Ca2+ sparks promote myogenic tone in retinal arterioles. Br J Pharmacol. 2013;168(7):1675–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui J, Yang H, Lee US. Molecular mechanisms of BK channel activation. Cell Mol Life Sci. 2009;66(5):852–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buck E, Zimanyi I, Abramson JJ, Pessah IN. Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. J Biol Chem. 1992;267(33):23560–7.
CAS
PubMed
Google Scholar
Scherer EQ, Wangemann P. ETA receptors in the gerbil spiral modiolar artery. Adv Otorhinolaryngol. 2002;59:58–65.
CAS
PubMed
Google Scholar
Jaggar JH. Intravascular pressure regulates local and global Ca2+ signaling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol. 2001;281(2):C439–48.
CAS
PubMed
Google Scholar
Miriel VA, Mauban JR, Blaustein MP, Wier WG. Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation. J Physiol. 1999;518(Pt 3):815–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukyanenko V, Gyorke S. Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. J Physiol. 1999;521(Pt 3):575–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 2000;407(6806):870–6.
Article
CAS
PubMed
Google Scholar
Evanson KW, Bannister JP, Leo MD, Jaggar JH. LRRC26 is a functional BK channel auxiliary gamma subunit in arterial smooth muscle cells. Circ Res. 2014;115(4):423–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohn M, Jessner W, Furstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res. 2001;89(11):1051–7.
Article
CAS
PubMed
Google Scholar
Westcott EB, Goodwin EL, Segal SS, Jackson WF. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. J Physiol. 2012;590(8):1849–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79(2):387–423.
CAS
PubMed
Google Scholar
Schubert R, Lidington D, Bolz SS. The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res. 2008;77(1):8–18.
CAS
PubMed
Google Scholar
Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC. Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol. 2009;587(Pt 11):2537–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno-Dominguez A, Colinas O, El-Yazbi A, Walsh EJ, Hill MA, Walsh MP, Cole WC. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries. J Physiol. 2013;591(5):1235–50.
Article
PubMed
Google Scholar
Sward K, Mita M, Wilson DP, Deng JT, Susnjar M, Walsh MP. The role of RhoA and Rho-associated kinase in vascular smooth muscle contraction. Curr Hypertens Rep. 2003;5(1):66–72.
Article
PubMed
Google Scholar
Lagaud G, Gaudreault N, Moore ED, Van Breemen C, Laher I. Pressure-dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation. Am J Physiol Heart Circ Physiol. 2002;283(6):H2187–95.
Article
CAS
PubMed
Google Scholar
Ito K, Shimomura E, Iwanaga T, Shiraishi M, Shindo K, Nakamura J, Nagumo H, Seto M, Sasaki Y, Takuwa Y. Essential role of rho kinase in the Ca2+ sensitization of prostaglandin F2α-induced contraction of rabbit aortae. J Physiol. 2003;546(Pt 3):823–36.
Article
CAS
PubMed
Google Scholar
Baek I, Jeon SB, Kim J, Seok YM, Song MJ, Chae SC, Jun JE, Park WH, Kim IK. A role for Rho-kinase in Ca-independent contractions induced by phorbol-12,13-dibutyrate. Clin Exp Pharmacol Physiol. 2009;36(3):256–61.
Article
CAS
PubMed
Google Scholar
El-Yazbi AF, Johnson RP, Walsh EJ, Takeya K, Walsh MP, Cole WC. Pressure-dependent contribution of Rho kinase-mediated calcium sensitization in serotonin-evoked vasoconstriction of rat cerebral arteries. J Physiol. 2010;588(Pt 10):1747–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gleich O, Strutz J. The Mongolian gerbil as a model for the analysis of peripheral and central age-dependent hearing loss. In: Naz S, editor. Hearing loss. Rijeka, Croatia: InTech. 2012. doi:10.5772/33569.